xref: /qemu/hw/net/cadence_gem.c (revision ce077875)
1 /*
2  * QEMU Cadence GEM emulation
3  *
4  * Copyright (c) 2011 Xilinx, Inc.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include <zlib.h> /* For crc32 */
27 
28 #include "hw/irq.h"
29 #include "hw/net/cadence_gem.h"
30 #include "hw/qdev-properties.h"
31 #include "hw/registerfields.h"
32 #include "migration/vmstate.h"
33 #include "qapi/error.h"
34 #include "qemu/log.h"
35 #include "qemu/module.h"
36 #include "sysemu/dma.h"
37 #include "net/checksum.h"
38 #include "net/eth.h"
39 
40 #define CADENCE_GEM_ERR_DEBUG 0
41 #define DB_PRINT(...) do {\
42     if (CADENCE_GEM_ERR_DEBUG) {   \
43         qemu_log(": %s: ", __func__); \
44         qemu_log(__VA_ARGS__); \
45     } \
46 } while (0)
47 
48 REG32(NWCTRL, 0x0) /* Network Control reg */
49     FIELD(NWCTRL, LOOPBACK , 0, 1)
50     FIELD(NWCTRL, LOOPBACK_LOCAL , 1, 1)
51     FIELD(NWCTRL, ENABLE_RECEIVE, 2, 1)
52     FIELD(NWCTRL, ENABLE_TRANSMIT, 3, 1)
53     FIELD(NWCTRL, MAN_PORT_EN , 4, 1)
54     FIELD(NWCTRL, CLEAR_ALL_STATS_REGS , 5, 1)
55     FIELD(NWCTRL, INC_ALL_STATS_REGS, 6, 1)
56     FIELD(NWCTRL, STATS_WRITE_EN, 7, 1)
57     FIELD(NWCTRL, BACK_PRESSURE, 8, 1)
58     FIELD(NWCTRL, TRANSMIT_START , 9, 1)
59     FIELD(NWCTRL, TRANSMIT_HALT, 10, 1)
60     FIELD(NWCTRL, TX_PAUSE_FRAME_RE, 11, 1)
61     FIELD(NWCTRL, TX_PAUSE_FRAME_ZE, 12, 1)
62     FIELD(NWCTRL, STATS_TAKE_SNAP, 13, 1)
63     FIELD(NWCTRL, STATS_READ_SNAP, 14, 1)
64     FIELD(NWCTRL, STORE_RX_TS, 15, 1)
65     FIELD(NWCTRL, PFC_ENABLE, 16, 1)
66     FIELD(NWCTRL, PFC_PRIO_BASED, 17, 1)
67     FIELD(NWCTRL, FLUSH_RX_PKT_PCLK , 18, 1)
68     FIELD(NWCTRL, TX_LPI_EN, 19, 1)
69     FIELD(NWCTRL, PTP_UNICAST_ENA, 20, 1)
70     FIELD(NWCTRL, ALT_SGMII_MODE, 21, 1)
71     FIELD(NWCTRL, STORE_UDP_OFFSET, 22, 1)
72     FIELD(NWCTRL, EXT_TSU_PORT_EN, 23, 1)
73     FIELD(NWCTRL, ONE_STEP_SYNC_MO, 24, 1)
74     FIELD(NWCTRL, PFC_CTRL , 25, 1)
75     FIELD(NWCTRL, EXT_RXQ_SEL_EN , 26, 1)
76     FIELD(NWCTRL, OSS_CORRECTION_FIELD, 27, 1)
77     FIELD(NWCTRL, SEL_MII_ON_RGMII, 28, 1)
78     FIELD(NWCTRL, TWO_PT_FIVE_GIG, 29, 1)
79     FIELD(NWCTRL, IFG_EATS_QAV_CREDIT, 30, 1)
80 
81 REG32(NWCFG, 0x4) /* Network Config reg */
82     FIELD(NWCFG, SPEED, 0, 1)
83     FIELD(NWCFG, FULL_DUPLEX, 1, 1)
84     FIELD(NWCFG, DISCARD_NON_VLAN_FRAMES, 2, 1)
85     FIELD(NWCFG, JUMBO_FRAMES, 3, 1)
86     FIELD(NWCFG, PROMISC, 4, 1)
87     FIELD(NWCFG, NO_BROADCAST, 5, 1)
88     FIELD(NWCFG, MULTICAST_HASH_EN, 6, 1)
89     FIELD(NWCFG, UNICAST_HASH_EN, 7, 1)
90     FIELD(NWCFG, RECV_1536_BYTE_FRAMES, 8, 1)
91     FIELD(NWCFG, EXTERNAL_ADDR_MATCH_EN, 9, 1)
92     FIELD(NWCFG, GIGABIT_MODE_ENABLE, 10, 1)
93     FIELD(NWCFG, PCS_SELECT, 11, 1)
94     FIELD(NWCFG, RETRY_TEST, 12, 1)
95     FIELD(NWCFG, PAUSE_ENABLE, 13, 1)
96     FIELD(NWCFG, RECV_BUF_OFFSET, 14, 2)
97     FIELD(NWCFG, LEN_ERR_DISCARD, 16, 1)
98     FIELD(NWCFG, FCS_REMOVE, 17, 1)
99     FIELD(NWCFG, MDC_CLOCK_DIV, 18, 3)
100     FIELD(NWCFG, DATA_BUS_WIDTH, 21, 2)
101     FIELD(NWCFG, DISABLE_COPY_PAUSE_FRAMES, 23, 1)
102     FIELD(NWCFG, RECV_CSUM_OFFLOAD_EN, 24, 1)
103     FIELD(NWCFG, EN_HALF_DUPLEX_RX, 25, 1)
104     FIELD(NWCFG, IGNORE_RX_FCS, 26, 1)
105     FIELD(NWCFG, SGMII_MODE_ENABLE, 27, 1)
106     FIELD(NWCFG, IPG_STRETCH_ENABLE, 28, 1)
107     FIELD(NWCFG, NSP_ACCEPT, 29, 1)
108     FIELD(NWCFG, IGNORE_IPG_RX_ER, 30, 1)
109     FIELD(NWCFG, UNI_DIRECTION_ENABLE, 31, 1)
110 
111 REG32(NWSTATUS, 0x8) /* Network Status reg */
112 REG32(USERIO, 0xc) /* User IO reg */
113 
114 REG32(DMACFG, 0x10) /* DMA Control reg */
115     FIELD(DMACFG, SEND_BCAST_TO_ALL_QS, 31, 1)
116     FIELD(DMACFG, DMA_ADDR_BUS_WIDTH, 30, 1)
117     FIELD(DMACFG, TX_BD_EXT_MODE_EN , 29, 1)
118     FIELD(DMACFG, RX_BD_EXT_MODE_EN , 28, 1)
119     FIELD(DMACFG, FORCE_MAX_AMBA_BURST_TX, 26, 1)
120     FIELD(DMACFG, FORCE_MAX_AMBA_BURST_RX, 25, 1)
121     FIELD(DMACFG, FORCE_DISCARD_ON_ERR, 24, 1)
122     FIELD(DMACFG, RX_BUF_SIZE, 16, 8)
123     FIELD(DMACFG, CRC_ERROR_REPORT, 13, 1)
124     FIELD(DMACFG, INF_LAST_DBUF_SIZE_EN, 12, 1)
125     FIELD(DMACFG, TX_PBUF_CSUM_OFFLOAD, 11, 1)
126     FIELD(DMACFG, TX_PBUF_SIZE, 10, 1)
127     FIELD(DMACFG, RX_PBUF_SIZE, 8, 2)
128     FIELD(DMACFG, ENDIAN_SWAP_PACKET, 7, 1)
129     FIELD(DMACFG, ENDIAN_SWAP_MGNT, 6, 1)
130     FIELD(DMACFG, HDR_DATA_SPLIT_EN, 5, 1)
131     FIELD(DMACFG, AMBA_BURST_LEN , 0, 5)
132 #define GEM_DMACFG_RBUFSZ_MUL  64         /* DMA RX Buffer Size multiplier */
133 
134 REG32(TXSTATUS, 0x14) /* TX Status reg */
135     FIELD(TXSTATUS, TX_USED_BIT_READ_MIDFRAME, 12, 1)
136     FIELD(TXSTATUS, TX_FRAME_TOO_LARGE, 11, 1)
137     FIELD(TXSTATUS, TX_DMA_LOCKUP, 10, 1)
138     FIELD(TXSTATUS, TX_MAC_LOCKUP, 9, 1)
139     FIELD(TXSTATUS, RESP_NOT_OK, 8, 1)
140     FIELD(TXSTATUS, LATE_COLLISION, 7, 1)
141     FIELD(TXSTATUS, TRANSMIT_UNDER_RUN, 6, 1)
142     FIELD(TXSTATUS, TRANSMIT_COMPLETE, 5, 1)
143     FIELD(TXSTATUS, AMBA_ERROR, 4, 1)
144     FIELD(TXSTATUS, TRANSMIT_GO, 3, 1)
145     FIELD(TXSTATUS, RETRY_LIMIT, 2, 1)
146     FIELD(TXSTATUS, COLLISION, 1, 1)
147     FIELD(TXSTATUS, USED_BIT_READ, 0, 1)
148 
149 REG32(RXQBASE, 0x18) /* RX Q Base address reg */
150 REG32(TXQBASE, 0x1c) /* TX Q Base address reg */
151 REG32(RXSTATUS, 0x20) /* RX Status reg */
152     FIELD(RXSTATUS, RX_DMA_LOCKUP, 5, 1)
153     FIELD(RXSTATUS, RX_MAC_LOCKUP, 4, 1)
154     FIELD(RXSTATUS, RESP_NOT_OK, 3, 1)
155     FIELD(RXSTATUS, RECEIVE_OVERRUN, 2, 1)
156     FIELD(RXSTATUS, FRAME_RECEIVED, 1, 1)
157     FIELD(RXSTATUS, BUF_NOT_AVAILABLE, 0, 1)
158 
159 REG32(ISR, 0x24) /* Interrupt Status reg */
160     FIELD(ISR, TX_LOCKUP, 31, 1)
161     FIELD(ISR, RX_LOCKUP, 30, 1)
162     FIELD(ISR, TSU_TIMER, 29, 1)
163     FIELD(ISR, WOL, 28, 1)
164     FIELD(ISR, RECV_LPI, 27, 1)
165     FIELD(ISR, TSU_SEC_INCR, 26, 1)
166     FIELD(ISR, PTP_PDELAY_RESP_XMIT, 25, 1)
167     FIELD(ISR, PTP_PDELAY_REQ_XMIT, 24, 1)
168     FIELD(ISR, PTP_PDELAY_RESP_RECV, 23, 1)
169     FIELD(ISR, PTP_PDELAY_REQ_RECV, 22, 1)
170     FIELD(ISR, PTP_SYNC_XMIT, 21, 1)
171     FIELD(ISR, PTP_DELAY_REQ_XMIT, 20, 1)
172     FIELD(ISR, PTP_SYNC_RECV, 19, 1)
173     FIELD(ISR, PTP_DELAY_REQ_RECV, 18, 1)
174     FIELD(ISR, PCS_LP_PAGE_RECV, 17, 1)
175     FIELD(ISR, PCS_AN_COMPLETE, 16, 1)
176     FIELD(ISR, EXT_IRQ, 15, 1)
177     FIELD(ISR, PAUSE_FRAME_XMIT, 14, 1)
178     FIELD(ISR, PAUSE_TIME_ELAPSED, 13, 1)
179     FIELD(ISR, PAUSE_FRAME_RECV, 12, 1)
180     FIELD(ISR, RESP_NOT_OK, 11, 1)
181     FIELD(ISR, RECV_OVERRUN, 10, 1)
182     FIELD(ISR, LINK_CHANGE, 9, 1)
183     FIELD(ISR, USXGMII_INT, 8, 1)
184     FIELD(ISR, XMIT_COMPLETE, 7, 1)
185     FIELD(ISR, AMBA_ERROR, 6, 1)
186     FIELD(ISR, RETRY_EXCEEDED, 5, 1)
187     FIELD(ISR, XMIT_UNDER_RUN, 4, 1)
188     FIELD(ISR, TX_USED, 3, 1)
189     FIELD(ISR, RX_USED, 2, 1)
190     FIELD(ISR, RECV_COMPLETE, 1, 1)
191     FIELD(ISR, MGNT_FRAME_SENT, 0, 1)
192 REG32(IER, 0x28) /* Interrupt Enable reg */
193 REG32(IDR, 0x2c) /* Interrupt Disable reg */
194 REG32(IMR, 0x30) /* Interrupt Mask reg */
195 
196 REG32(PHYMNTNC, 0x34) /* Phy Maintenance reg */
197 REG32(RXPAUSE, 0x38) /* RX Pause Time reg */
198 REG32(TXPAUSE, 0x3c) /* TX Pause Time reg */
199 REG32(TXPARTIALSF, 0x40) /* TX Partial Store and Forward */
200 REG32(RXPARTIALSF, 0x44) /* RX Partial Store and Forward */
201 REG32(JUMBO_MAX_LEN, 0x48) /* Max Jumbo Frame Size */
202 REG32(HASHLO, 0x80) /* Hash Low address reg */
203 REG32(HASHHI, 0x84) /* Hash High address reg */
204 REG32(SPADDR1LO, 0x88) /* Specific addr 1 low reg */
205 REG32(SPADDR1HI, 0x8c) /* Specific addr 1 high reg */
206 REG32(SPADDR2LO, 0x90) /* Specific addr 2 low reg */
207 REG32(SPADDR2HI, 0x94) /* Specific addr 2 high reg */
208 REG32(SPADDR3LO, 0x98) /* Specific addr 3 low reg */
209 REG32(SPADDR3HI, 0x9c) /* Specific addr 3 high reg */
210 REG32(SPADDR4LO, 0xa0) /* Specific addr 4 low reg */
211 REG32(SPADDR4HI, 0xa4) /* Specific addr 4 high reg */
212 REG32(TIDMATCH1, 0xa8) /* Type ID1 Match reg */
213 REG32(TIDMATCH2, 0xac) /* Type ID2 Match reg */
214 REG32(TIDMATCH3, 0xb0) /* Type ID3 Match reg */
215 REG32(TIDMATCH4, 0xb4) /* Type ID4 Match reg */
216 REG32(WOLAN, 0xb8) /* Wake on LAN reg */
217 REG32(IPGSTRETCH, 0xbc) /* IPG Stretch reg */
218 REG32(SVLAN, 0xc0) /* Stacked VLAN reg */
219 REG32(MODID, 0xfc) /* Module ID reg */
220 REG32(OCTTXLO, 0x100) /* Octects transmitted Low reg */
221 REG32(OCTTXHI, 0x104) /* Octects transmitted High reg */
222 REG32(TXCNT, 0x108) /* Error-free Frames transmitted */
223 REG32(TXBCNT, 0x10c) /* Error-free Broadcast Frames */
224 REG32(TXMCNT, 0x110) /* Error-free Multicast Frame */
225 REG32(TXPAUSECNT, 0x114) /* Pause Frames Transmitted */
226 REG32(TX64CNT, 0x118) /* Error-free 64 TX */
227 REG32(TX65CNT, 0x11c) /* Error-free 65-127 TX */
228 REG32(TX128CNT, 0x120) /* Error-free 128-255 TX */
229 REG32(TX256CNT, 0x124) /* Error-free 256-511 */
230 REG32(TX512CNT, 0x128) /* Error-free 512-1023 TX */
231 REG32(TX1024CNT, 0x12c) /* Error-free 1024-1518 TX */
232 REG32(TX1519CNT, 0x130) /* Error-free larger than 1519 TX */
233 REG32(TXURUNCNT, 0x134) /* TX under run error counter */
234 REG32(SINGLECOLLCNT, 0x138) /* Single Collision Frames */
235 REG32(MULTCOLLCNT, 0x13c) /* Multiple Collision Frames */
236 REG32(EXCESSCOLLCNT, 0x140) /* Excessive Collision Frames */
237 REG32(LATECOLLCNT, 0x144) /* Late Collision Frames */
238 REG32(DEFERTXCNT, 0x148) /* Deferred Transmission Frames */
239 REG32(CSENSECNT, 0x14c) /* Carrier Sense Error Counter */
240 REG32(OCTRXLO, 0x150) /* Octects Received register Low */
241 REG32(OCTRXHI, 0x154) /* Octects Received register High */
242 REG32(RXCNT, 0x158) /* Error-free Frames Received */
243 REG32(RXBROADCNT, 0x15c) /* Error-free Broadcast Frames RX */
244 REG32(RXMULTICNT, 0x160) /* Error-free Multicast Frames RX */
245 REG32(RXPAUSECNT, 0x164) /* Pause Frames Received Counter */
246 REG32(RX64CNT, 0x168) /* Error-free 64 byte Frames RX */
247 REG32(RX65CNT, 0x16c) /* Error-free 65-127B Frames RX */
248 REG32(RX128CNT, 0x170) /* Error-free 128-255B Frames RX */
249 REG32(RX256CNT, 0x174) /* Error-free 256-512B Frames RX */
250 REG32(RX512CNT, 0x178) /* Error-free 512-1023B Frames RX */
251 REG32(RX1024CNT, 0x17c) /* Error-free 1024-1518B Frames RX */
252 REG32(RX1519CNT, 0x180) /* Error-free 1519-max Frames RX */
253 REG32(RXUNDERCNT, 0x184) /* Undersize Frames Received */
254 REG32(RXOVERCNT, 0x188) /* Oversize Frames Received */
255 REG32(RXJABCNT, 0x18c) /* Jabbers Received Counter */
256 REG32(RXFCSCNT, 0x190) /* Frame Check seq. Error Counter */
257 REG32(RXLENERRCNT, 0x194) /* Length Field Error Counter */
258 REG32(RXSYMERRCNT, 0x198) /* Symbol Error Counter */
259 REG32(RXALIGNERRCNT, 0x19c) /* Alignment Error Counter */
260 REG32(RXRSCERRCNT, 0x1a0) /* Receive Resource Error Counter */
261 REG32(RXORUNCNT, 0x1a4) /* Receive Overrun Counter */
262 REG32(RXIPCSERRCNT, 0x1a8) /* IP header Checksum Err Counter */
263 REG32(RXTCPCCNT, 0x1ac) /* TCP Checksum Error Counter */
264 REG32(RXUDPCCNT, 0x1b0) /* UDP Checksum Error Counter */
265 
266 REG32(1588S, 0x1d0) /* 1588 Timer Seconds */
267 REG32(1588NS, 0x1d4) /* 1588 Timer Nanoseconds */
268 REG32(1588ADJ, 0x1d8) /* 1588 Timer Adjust */
269 REG32(1588INC, 0x1dc) /* 1588 Timer Increment */
270 REG32(PTPETXS, 0x1e0) /* PTP Event Frame Transmitted (s) */
271 REG32(PTPETXNS, 0x1e4) /* PTP Event Frame Transmitted (ns) */
272 REG32(PTPERXS, 0x1e8) /* PTP Event Frame Received (s) */
273 REG32(PTPERXNS, 0x1ec) /* PTP Event Frame Received (ns) */
274 REG32(PTPPTXS, 0x1e0) /* PTP Peer Frame Transmitted (s) */
275 REG32(PTPPTXNS, 0x1e4) /* PTP Peer Frame Transmitted (ns) */
276 REG32(PTPPRXS, 0x1e8) /* PTP Peer Frame Received (s) */
277 REG32(PTPPRXNS, 0x1ec) /* PTP Peer Frame Received (ns) */
278 
279 /* Design Configuration Registers */
280 REG32(DESCONF, 0x280)
281 REG32(DESCONF2, 0x284)
282 REG32(DESCONF3, 0x288)
283 REG32(DESCONF4, 0x28c)
284 REG32(DESCONF5, 0x290)
285 REG32(DESCONF6, 0x294)
286     FIELD(DESCONF6, DMA_ADDR_64B, 23, 1)
287 REG32(DESCONF7, 0x298)
288 
289 REG32(INT_Q1_STATUS, 0x400)
290 REG32(INT_Q1_MASK, 0x640)
291 
292 REG32(TRANSMIT_Q1_PTR, 0x440)
293 REG32(TRANSMIT_Q7_PTR, 0x458)
294 
295 REG32(RECEIVE_Q1_PTR, 0x480)
296 REG32(RECEIVE_Q7_PTR, 0x498)
297 
298 REG32(TBQPH, 0x4c8)
299 REG32(RBQPH, 0x4d4)
300 
301 REG32(INT_Q1_ENABLE, 0x600)
302 REG32(INT_Q7_ENABLE, 0x618)
303 
304 REG32(INT_Q1_DISABLE, 0x620)
305 REG32(INT_Q7_DISABLE, 0x638)
306 
307 REG32(SCREENING_TYPE1_REG0, 0x500)
308     FIELD(SCREENING_TYPE1_REG0, QUEUE_NUM, 0, 4)
309     FIELD(SCREENING_TYPE1_REG0, DSTC_MATCH, 4, 8)
310     FIELD(SCREENING_TYPE1_REG0, UDP_PORT_MATCH, 12, 16)
311     FIELD(SCREENING_TYPE1_REG0, DSTC_ENABLE, 28, 1)
312     FIELD(SCREENING_TYPE1_REG0, UDP_PORT_MATCH_EN, 29, 1)
313     FIELD(SCREENING_TYPE1_REG0, DROP_ON_MATCH, 30, 1)
314 
315 REG32(SCREENING_TYPE2_REG0, 0x540)
316     FIELD(SCREENING_TYPE2_REG0, QUEUE_NUM, 0, 4)
317     FIELD(SCREENING_TYPE2_REG0, VLAN_PRIORITY, 4, 3)
318     FIELD(SCREENING_TYPE2_REG0, VLAN_ENABLE, 8, 1)
319     FIELD(SCREENING_TYPE2_REG0, ETHERTYPE_REG_INDEX, 9, 3)
320     FIELD(SCREENING_TYPE2_REG0, ETHERTYPE_ENABLE, 12, 1)
321     FIELD(SCREENING_TYPE2_REG0, COMPARE_A, 13, 5)
322     FIELD(SCREENING_TYPE2_REG0, COMPARE_A_ENABLE, 18, 1)
323     FIELD(SCREENING_TYPE2_REG0, COMPARE_B, 19, 5)
324     FIELD(SCREENING_TYPE2_REG0, COMPARE_B_ENABLE, 24, 1)
325     FIELD(SCREENING_TYPE2_REG0, COMPARE_C, 25, 5)
326     FIELD(SCREENING_TYPE2_REG0, COMPARE_C_ENABLE, 30, 1)
327     FIELD(SCREENING_TYPE2_REG0, DROP_ON_MATCH, 31, 1)
328 
329 REG32(SCREENING_TYPE2_ETHERTYPE_REG0, 0x6e0)
330 
331 REG32(TYPE2_COMPARE_0_WORD_0, 0x700)
332     FIELD(TYPE2_COMPARE_0_WORD_0, MASK_VALUE, 0, 16)
333     FIELD(TYPE2_COMPARE_0_WORD_0, COMPARE_VALUE, 16, 16)
334 
335 REG32(TYPE2_COMPARE_0_WORD_1, 0x704)
336     FIELD(TYPE2_COMPARE_0_WORD_1, OFFSET_VALUE, 0, 7)
337     FIELD(TYPE2_COMPARE_0_WORD_1, COMPARE_OFFSET, 7, 2)
338     FIELD(TYPE2_COMPARE_0_WORD_1, DISABLE_MASK, 9, 1)
339     FIELD(TYPE2_COMPARE_0_WORD_1, COMPARE_VLAN_ID, 10, 1)
340 
341 /*****************************************/
342 
343 
344 
345 #define GEM_PHYMNTNC_OP_R      0x20000000 /* read operation */
346 #define GEM_PHYMNTNC_OP_W      0x10000000 /* write operation */
347 #define GEM_PHYMNTNC_ADDR      0x0F800000 /* Address bits */
348 #define GEM_PHYMNTNC_ADDR_SHFT 23
349 #define GEM_PHYMNTNC_REG       0x007C0000 /* register bits */
350 #define GEM_PHYMNTNC_REG_SHIFT 18
351 
352 /* Marvell PHY definitions */
353 #define BOARD_PHY_ADDRESS    0 /* PHY address we will emulate a device at */
354 
355 #define PHY_REG_CONTROL      0
356 #define PHY_REG_STATUS       1
357 #define PHY_REG_PHYID1       2
358 #define PHY_REG_PHYID2       3
359 #define PHY_REG_ANEGADV      4
360 #define PHY_REG_LINKPABIL    5
361 #define PHY_REG_ANEGEXP      6
362 #define PHY_REG_NEXTP        7
363 #define PHY_REG_LINKPNEXTP   8
364 #define PHY_REG_100BTCTRL    9
365 #define PHY_REG_1000BTSTAT   10
366 #define PHY_REG_EXTSTAT      15
367 #define PHY_REG_PHYSPCFC_CTL 16
368 #define PHY_REG_PHYSPCFC_ST  17
369 #define PHY_REG_INT_EN       18
370 #define PHY_REG_INT_ST       19
371 #define PHY_REG_EXT_PHYSPCFC_CTL  20
372 #define PHY_REG_RXERR        21
373 #define PHY_REG_EACD         22
374 #define PHY_REG_LED          24
375 #define PHY_REG_LED_OVRD     25
376 #define PHY_REG_EXT_PHYSPCFC_CTL2 26
377 #define PHY_REG_EXT_PHYSPCFC_ST   27
378 #define PHY_REG_CABLE_DIAG   28
379 
380 #define PHY_REG_CONTROL_RST       0x8000
381 #define PHY_REG_CONTROL_LOOP      0x4000
382 #define PHY_REG_CONTROL_ANEG      0x1000
383 #define PHY_REG_CONTROL_ANRESTART 0x0200
384 
385 #define PHY_REG_STATUS_LINK     0x0004
386 #define PHY_REG_STATUS_ANEGCMPL 0x0020
387 
388 #define PHY_REG_INT_ST_ANEGCMPL 0x0800
389 #define PHY_REG_INT_ST_LINKC    0x0400
390 #define PHY_REG_INT_ST_ENERGY   0x0010
391 
392 /***********************************************************************/
393 #define GEM_RX_REJECT                   (-1)
394 #define GEM_RX_PROMISCUOUS_ACCEPT       (-2)
395 #define GEM_RX_BROADCAST_ACCEPT         (-3)
396 #define GEM_RX_MULTICAST_HASH_ACCEPT    (-4)
397 #define GEM_RX_UNICAST_HASH_ACCEPT      (-5)
398 
399 #define GEM_RX_SAR_ACCEPT               0
400 
401 /***********************************************************************/
402 
403 #define DESC_1_USED 0x80000000
404 #define DESC_1_LENGTH 0x00001FFF
405 
406 #define DESC_1_TX_WRAP 0x40000000
407 #define DESC_1_TX_LAST 0x00008000
408 
409 #define DESC_0_RX_WRAP 0x00000002
410 #define DESC_0_RX_OWNERSHIP 0x00000001
411 
412 #define R_DESC_1_RX_SAR_SHIFT           25
413 #define R_DESC_1_RX_SAR_LENGTH          2
414 #define R_DESC_1_RX_SAR_MATCH           (1 << 27)
415 #define R_DESC_1_RX_UNICAST_HASH        (1 << 29)
416 #define R_DESC_1_RX_MULTICAST_HASH      (1 << 30)
417 #define R_DESC_1_RX_BROADCAST           (1 << 31)
418 
419 #define DESC_1_RX_SOF 0x00004000
420 #define DESC_1_RX_EOF 0x00008000
421 
422 #define GEM_MODID_VALUE 0x00020118
423 
424 static inline uint64_t tx_desc_get_buffer(CadenceGEMState *s, uint32_t *desc)
425 {
426     uint64_t ret = desc[0];
427 
428     if (FIELD_EX32(s->regs[R_DMACFG], DMACFG, DMA_ADDR_BUS_WIDTH)) {
429         ret |= (uint64_t)desc[2] << 32;
430     }
431     return ret;
432 }
433 
434 static inline unsigned tx_desc_get_used(uint32_t *desc)
435 {
436     return (desc[1] & DESC_1_USED) ? 1 : 0;
437 }
438 
439 static inline void tx_desc_set_used(uint32_t *desc)
440 {
441     desc[1] |= DESC_1_USED;
442 }
443 
444 static inline unsigned tx_desc_get_wrap(uint32_t *desc)
445 {
446     return (desc[1] & DESC_1_TX_WRAP) ? 1 : 0;
447 }
448 
449 static inline unsigned tx_desc_get_last(uint32_t *desc)
450 {
451     return (desc[1] & DESC_1_TX_LAST) ? 1 : 0;
452 }
453 
454 static inline unsigned tx_desc_get_length(uint32_t *desc)
455 {
456     return desc[1] & DESC_1_LENGTH;
457 }
458 
459 static inline void print_gem_tx_desc(uint32_t *desc, uint8_t queue)
460 {
461     DB_PRINT("TXDESC (queue %" PRId8 "):\n", queue);
462     DB_PRINT("bufaddr: 0x%08x\n", *desc);
463     DB_PRINT("used_hw: %d\n", tx_desc_get_used(desc));
464     DB_PRINT("wrap:    %d\n", tx_desc_get_wrap(desc));
465     DB_PRINT("last:    %d\n", tx_desc_get_last(desc));
466     DB_PRINT("length:  %d\n", tx_desc_get_length(desc));
467 }
468 
469 static inline uint64_t rx_desc_get_buffer(CadenceGEMState *s, uint32_t *desc)
470 {
471     uint64_t ret = desc[0] & ~0x3UL;
472 
473     if (FIELD_EX32(s->regs[R_DMACFG], DMACFG, DMA_ADDR_BUS_WIDTH)) {
474         ret |= (uint64_t)desc[2] << 32;
475     }
476     return ret;
477 }
478 
479 static inline int gem_get_desc_len(CadenceGEMState *s, bool rx_n_tx)
480 {
481     int ret = 2;
482 
483     if (FIELD_EX32(s->regs[R_DMACFG], DMACFG, DMA_ADDR_BUS_WIDTH)) {
484         ret += 2;
485     }
486     if (s->regs[R_DMACFG] & (rx_n_tx ? R_DMACFG_RX_BD_EXT_MODE_EN_MASK
487                                      : R_DMACFG_TX_BD_EXT_MODE_EN_MASK)) {
488         ret += 2;
489     }
490 
491     assert(ret <= DESC_MAX_NUM_WORDS);
492     return ret;
493 }
494 
495 static inline unsigned rx_desc_get_wrap(uint32_t *desc)
496 {
497     return desc[0] & DESC_0_RX_WRAP ? 1 : 0;
498 }
499 
500 static inline unsigned rx_desc_get_ownership(uint32_t *desc)
501 {
502     return desc[0] & DESC_0_RX_OWNERSHIP ? 1 : 0;
503 }
504 
505 static inline void rx_desc_set_ownership(uint32_t *desc)
506 {
507     desc[0] |= DESC_0_RX_OWNERSHIP;
508 }
509 
510 static inline void rx_desc_set_sof(uint32_t *desc)
511 {
512     desc[1] |= DESC_1_RX_SOF;
513 }
514 
515 static inline void rx_desc_clear_control(uint32_t *desc)
516 {
517     desc[1]  = 0;
518 }
519 
520 static inline void rx_desc_set_eof(uint32_t *desc)
521 {
522     desc[1] |= DESC_1_RX_EOF;
523 }
524 
525 static inline void rx_desc_set_length(uint32_t *desc, unsigned len)
526 {
527     desc[1] &= ~DESC_1_LENGTH;
528     desc[1] |= len;
529 }
530 
531 static inline void rx_desc_set_broadcast(uint32_t *desc)
532 {
533     desc[1] |= R_DESC_1_RX_BROADCAST;
534 }
535 
536 static inline void rx_desc_set_unicast_hash(uint32_t *desc)
537 {
538     desc[1] |= R_DESC_1_RX_UNICAST_HASH;
539 }
540 
541 static inline void rx_desc_set_multicast_hash(uint32_t *desc)
542 {
543     desc[1] |= R_DESC_1_RX_MULTICAST_HASH;
544 }
545 
546 static inline void rx_desc_set_sar(uint32_t *desc, int sar_idx)
547 {
548     desc[1] = deposit32(desc[1], R_DESC_1_RX_SAR_SHIFT, R_DESC_1_RX_SAR_LENGTH,
549                         sar_idx);
550     desc[1] |= R_DESC_1_RX_SAR_MATCH;
551 }
552 
553 /* The broadcast MAC address: 0xFFFFFFFFFFFF */
554 static const uint8_t broadcast_addr[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
555 
556 static uint32_t gem_get_max_buf_len(CadenceGEMState *s, bool tx)
557 {
558     uint32_t size;
559     if (FIELD_EX32(s->regs[R_NWCFG], NWCFG, JUMBO_FRAMES)) {
560         size = s->regs[R_JUMBO_MAX_LEN];
561         if (size > s->jumbo_max_len) {
562             size = s->jumbo_max_len;
563             qemu_log_mask(LOG_GUEST_ERROR, "GEM_JUMBO_MAX_LEN reg cannot be"
564                 " greater than 0x%" PRIx32 "\n", s->jumbo_max_len);
565         }
566     } else if (tx) {
567         size = 1518;
568     } else {
569         size = FIELD_EX32(s->regs[R_NWCFG],
570                           NWCFG, RECV_1536_BYTE_FRAMES) ? 1538 : 1518;
571     }
572     return size;
573 }
574 
575 static void gem_set_isr(CadenceGEMState *s, int q, uint32_t flag)
576 {
577     if (q == 0) {
578         s->regs[R_ISR] |= flag & ~(s->regs[R_IMR]);
579     } else {
580         s->regs[R_INT_Q1_STATUS + q - 1] |= flag &
581                                       ~(s->regs[R_INT_Q1_MASK + q - 1]);
582     }
583 }
584 
585 /*
586  * gem_init_register_masks:
587  * One time initialization.
588  * Set masks to identify which register bits have magical clear properties
589  */
590 static void gem_init_register_masks(CadenceGEMState *s)
591 {
592     unsigned int i;
593     /* Mask of register bits which are read only */
594     memset(&s->regs_ro[0], 0, sizeof(s->regs_ro));
595     s->regs_ro[R_NWCTRL]   = 0xFFF80000;
596     s->regs_ro[R_NWSTATUS] = 0xFFFFFFFF;
597     s->regs_ro[R_DMACFG]   = 0x8E00F000;
598     s->regs_ro[R_TXSTATUS] = 0xFFFFFE08;
599     s->regs_ro[R_RXQBASE]  = 0x00000003;
600     s->regs_ro[R_TXQBASE]  = 0x00000003;
601     s->regs_ro[R_RXSTATUS] = 0xFFFFFFF0;
602     s->regs_ro[R_ISR]      = 0xFFFFFFFF;
603     s->regs_ro[R_IMR]      = 0xFFFFFFFF;
604     s->regs_ro[R_MODID]    = 0xFFFFFFFF;
605     for (i = 0; i < s->num_priority_queues; i++) {
606         s->regs_ro[R_INT_Q1_STATUS + i] = 0xFFFFFFFF;
607         s->regs_ro[R_INT_Q1_ENABLE + i] = 0xFFFFF319;
608         s->regs_ro[R_INT_Q1_DISABLE + i] = 0xFFFFF319;
609         s->regs_ro[R_INT_Q1_MASK + i] = 0xFFFFFFFF;
610     }
611 
612     /* Mask of register bits which are clear on read */
613     memset(&s->regs_rtc[0], 0, sizeof(s->regs_rtc));
614     s->regs_rtc[R_ISR]      = 0xFFFFFFFF;
615     for (i = 0; i < s->num_priority_queues; i++) {
616         s->regs_rtc[R_INT_Q1_STATUS + i] = 0x00000CE6;
617     }
618 
619     /* Mask of register bits which are write 1 to clear */
620     memset(&s->regs_w1c[0], 0, sizeof(s->regs_w1c));
621     s->regs_w1c[R_TXSTATUS] = 0x000001F7;
622     s->regs_w1c[R_RXSTATUS] = 0x0000000F;
623 
624     /* Mask of register bits which are write only */
625     memset(&s->regs_wo[0], 0, sizeof(s->regs_wo));
626     s->regs_wo[R_NWCTRL]   = 0x00073E60;
627     s->regs_wo[R_IER]      = 0x07FFFFFF;
628     s->regs_wo[R_IDR]      = 0x07FFFFFF;
629     for (i = 0; i < s->num_priority_queues; i++) {
630         s->regs_wo[R_INT_Q1_ENABLE + i] = 0x00000CE6;
631         s->regs_wo[R_INT_Q1_DISABLE + i] = 0x00000CE6;
632     }
633 }
634 
635 /*
636  * phy_update_link:
637  * Make the emulated PHY link state match the QEMU "interface" state.
638  */
639 static void phy_update_link(CadenceGEMState *s)
640 {
641     DB_PRINT("down %d\n", qemu_get_queue(s->nic)->link_down);
642 
643     /* Autonegotiation status mirrors link status.  */
644     if (qemu_get_queue(s->nic)->link_down) {
645         s->phy_regs[PHY_REG_STATUS] &= ~(PHY_REG_STATUS_ANEGCMPL |
646                                          PHY_REG_STATUS_LINK);
647         s->phy_regs[PHY_REG_INT_ST] |= PHY_REG_INT_ST_LINKC;
648     } else {
649         s->phy_regs[PHY_REG_STATUS] |= (PHY_REG_STATUS_ANEGCMPL |
650                                          PHY_REG_STATUS_LINK);
651         s->phy_regs[PHY_REG_INT_ST] |= (PHY_REG_INT_ST_LINKC |
652                                         PHY_REG_INT_ST_ANEGCMPL |
653                                         PHY_REG_INT_ST_ENERGY);
654     }
655 }
656 
657 static bool gem_can_receive(NetClientState *nc)
658 {
659     CadenceGEMState *s;
660     int i;
661 
662     s = qemu_get_nic_opaque(nc);
663 
664     /* Do nothing if receive is not enabled. */
665     if (!FIELD_EX32(s->regs[R_NWCTRL], NWCTRL, ENABLE_RECEIVE)) {
666         if (s->can_rx_state != 1) {
667             s->can_rx_state = 1;
668             DB_PRINT("can't receive - no enable\n");
669         }
670         return false;
671     }
672 
673     for (i = 0; i < s->num_priority_queues; i++) {
674         if (rx_desc_get_ownership(s->rx_desc[i]) != 1) {
675             break;
676         }
677     };
678 
679     if (i == s->num_priority_queues) {
680         if (s->can_rx_state != 2) {
681             s->can_rx_state = 2;
682             DB_PRINT("can't receive - all the buffer descriptors are busy\n");
683         }
684         return false;
685     }
686 
687     if (s->can_rx_state != 0) {
688         s->can_rx_state = 0;
689         DB_PRINT("can receive\n");
690     }
691     return true;
692 }
693 
694 /*
695  * gem_update_int_status:
696  * Raise or lower interrupt based on current status.
697  */
698 static void gem_update_int_status(CadenceGEMState *s)
699 {
700     int i;
701 
702     qemu_set_irq(s->irq[0], !!s->regs[R_ISR]);
703 
704     for (i = 1; i < s->num_priority_queues; ++i) {
705         qemu_set_irq(s->irq[i], !!s->regs[R_INT_Q1_STATUS + i - 1]);
706     }
707 }
708 
709 /*
710  * gem_receive_updatestats:
711  * Increment receive statistics.
712  */
713 static void gem_receive_updatestats(CadenceGEMState *s, const uint8_t *packet,
714                                     unsigned bytes)
715 {
716     uint64_t octets;
717 
718     /* Total octets (bytes) received */
719     octets = ((uint64_t)(s->regs[R_OCTRXLO]) << 32) |
720              s->regs[R_OCTRXHI];
721     octets += bytes;
722     s->regs[R_OCTRXLO] = octets >> 32;
723     s->regs[R_OCTRXHI] = octets;
724 
725     /* Error-free Frames received */
726     s->regs[R_RXCNT]++;
727 
728     /* Error-free Broadcast Frames counter */
729     if (!memcmp(packet, broadcast_addr, 6)) {
730         s->regs[R_RXBROADCNT]++;
731     }
732 
733     /* Error-free Multicast Frames counter */
734     if (packet[0] == 0x01) {
735         s->regs[R_RXMULTICNT]++;
736     }
737 
738     if (bytes <= 64) {
739         s->regs[R_RX64CNT]++;
740     } else if (bytes <= 127) {
741         s->regs[R_RX65CNT]++;
742     } else if (bytes <= 255) {
743         s->regs[R_RX128CNT]++;
744     } else if (bytes <= 511) {
745         s->regs[R_RX256CNT]++;
746     } else if (bytes <= 1023) {
747         s->regs[R_RX512CNT]++;
748     } else if (bytes <= 1518) {
749         s->regs[R_RX1024CNT]++;
750     } else {
751         s->regs[R_RX1519CNT]++;
752     }
753 }
754 
755 /*
756  * Get the MAC Address bit from the specified position
757  */
758 static unsigned get_bit(const uint8_t *mac, unsigned bit)
759 {
760     unsigned byte;
761 
762     byte = mac[bit / 8];
763     byte >>= (bit & 0x7);
764     byte &= 1;
765 
766     return byte;
767 }
768 
769 /*
770  * Calculate a GEM MAC Address hash index
771  */
772 static unsigned calc_mac_hash(const uint8_t *mac)
773 {
774     int index_bit, mac_bit;
775     unsigned hash_index;
776 
777     hash_index = 0;
778     mac_bit = 5;
779     for (index_bit = 5; index_bit >= 0; index_bit--) {
780         hash_index |= (get_bit(mac,  mac_bit) ^
781                                get_bit(mac, mac_bit + 6) ^
782                                get_bit(mac, mac_bit + 12) ^
783                                get_bit(mac, mac_bit + 18) ^
784                                get_bit(mac, mac_bit + 24) ^
785                                get_bit(mac, mac_bit + 30) ^
786                                get_bit(mac, mac_bit + 36) ^
787                                get_bit(mac, mac_bit + 42)) << index_bit;
788         mac_bit--;
789     }
790 
791     return hash_index;
792 }
793 
794 /*
795  * gem_mac_address_filter:
796  * Accept or reject this destination address?
797  * Returns:
798  * GEM_RX_REJECT: reject
799  * >= 0: Specific address accept (which matched SAR is returned)
800  * others for various other modes of accept:
801  * GEM_RM_PROMISCUOUS_ACCEPT, GEM_RX_BROADCAST_ACCEPT,
802  * GEM_RX_MULTICAST_HASH_ACCEPT or GEM_RX_UNICAST_HASH_ACCEPT
803  */
804 static int gem_mac_address_filter(CadenceGEMState *s, const uint8_t *packet)
805 {
806     uint8_t *gem_spaddr;
807     int i, is_mc;
808 
809     /* Promiscuous mode? */
810     if (FIELD_EX32(s->regs[R_NWCFG], NWCFG, PROMISC)) {
811         return GEM_RX_PROMISCUOUS_ACCEPT;
812     }
813 
814     if (!memcmp(packet, broadcast_addr, 6)) {
815         /* Reject broadcast packets? */
816         if (FIELD_EX32(s->regs[R_NWCFG], NWCFG, NO_BROADCAST)) {
817             return GEM_RX_REJECT;
818         }
819         return GEM_RX_BROADCAST_ACCEPT;
820     }
821 
822     /* Accept packets -w- hash match? */
823     is_mc = is_multicast_ether_addr(packet);
824     if ((is_mc && (FIELD_EX32(s->regs[R_NWCFG], NWCFG, MULTICAST_HASH_EN))) ||
825         (!is_mc && FIELD_EX32(s->regs[R_NWCFG], NWCFG, UNICAST_HASH_EN))) {
826         uint64_t buckets;
827         unsigned hash_index;
828 
829         hash_index = calc_mac_hash(packet);
830         buckets = ((uint64_t)s->regs[R_HASHHI] << 32) | s->regs[R_HASHLO];
831         if ((buckets >> hash_index) & 1) {
832             return is_mc ? GEM_RX_MULTICAST_HASH_ACCEPT
833                          : GEM_RX_UNICAST_HASH_ACCEPT;
834         }
835     }
836 
837     /* Check all 4 specific addresses */
838     gem_spaddr = (uint8_t *)&(s->regs[R_SPADDR1LO]);
839     for (i = 3; i >= 0; i--) {
840         if (s->sar_active[i] && !memcmp(packet, gem_spaddr + 8 * i, 6)) {
841             return GEM_RX_SAR_ACCEPT + i;
842         }
843     }
844 
845     /* No address match; reject the packet */
846     return GEM_RX_REJECT;
847 }
848 
849 /* Figure out which queue the received data should be sent to */
850 static int get_queue_from_screen(CadenceGEMState *s, uint8_t *rxbuf_ptr,
851                                  unsigned rxbufsize)
852 {
853     uint32_t reg;
854     bool matched, mismatched;
855     int i, j;
856 
857     for (i = 0; i < s->num_type1_screeners; i++) {
858         reg = s->regs[R_SCREENING_TYPE1_REG0 + i];
859         matched = false;
860         mismatched = false;
861 
862         /* Screening is based on UDP Port */
863         if (FIELD_EX32(reg, SCREENING_TYPE1_REG0, UDP_PORT_MATCH_EN)) {
864             uint16_t udp_port = rxbuf_ptr[14 + 22] << 8 | rxbuf_ptr[14 + 23];
865             if (udp_port == FIELD_EX32(reg, SCREENING_TYPE1_REG0, UDP_PORT_MATCH)) {
866                 matched = true;
867             } else {
868                 mismatched = true;
869             }
870         }
871 
872         /* Screening is based on DS/TC */
873         if (FIELD_EX32(reg, SCREENING_TYPE1_REG0, DSTC_ENABLE)) {
874             uint8_t dscp = rxbuf_ptr[14 + 1];
875             if (dscp == FIELD_EX32(reg, SCREENING_TYPE1_REG0, DSTC_MATCH)) {
876                 matched = true;
877             } else {
878                 mismatched = true;
879             }
880         }
881 
882         if (matched && !mismatched) {
883             return FIELD_EX32(reg, SCREENING_TYPE1_REG0, QUEUE_NUM);
884         }
885     }
886 
887     for (i = 0; i < s->num_type2_screeners; i++) {
888         reg = s->regs[R_SCREENING_TYPE2_REG0 + i];
889         matched = false;
890         mismatched = false;
891 
892         if (FIELD_EX32(reg, SCREENING_TYPE2_REG0, ETHERTYPE_ENABLE)) {
893             uint16_t type = rxbuf_ptr[12] << 8 | rxbuf_ptr[13];
894             int et_idx = FIELD_EX32(reg, SCREENING_TYPE2_REG0,
895                                     ETHERTYPE_REG_INDEX);
896 
897             if (et_idx > s->num_type2_screeners) {
898                 qemu_log_mask(LOG_GUEST_ERROR, "Out of range ethertype "
899                               "register index: %d\n", et_idx);
900             }
901             if (type == s->regs[R_SCREENING_TYPE2_ETHERTYPE_REG0 +
902                                 et_idx]) {
903                 matched = true;
904             } else {
905                 mismatched = true;
906             }
907         }
908 
909         /* Compare A, B, C */
910         for (j = 0; j < 3; j++) {
911             uint32_t cr0, cr1, mask, compare;
912             uint16_t rx_cmp;
913             int offset;
914             int cr_idx = extract32(reg, R_SCREENING_TYPE2_REG0_COMPARE_A_SHIFT + j * 6,
915                                    R_SCREENING_TYPE2_REG0_COMPARE_A_LENGTH);
916 
917             if (!extract32(reg, R_SCREENING_TYPE2_REG0_COMPARE_A_ENABLE_SHIFT + j * 6,
918                            R_SCREENING_TYPE2_REG0_COMPARE_A_ENABLE_LENGTH)) {
919                 continue;
920             }
921 
922             if (cr_idx > s->num_type2_screeners) {
923                 qemu_log_mask(LOG_GUEST_ERROR, "Out of range compare "
924                               "register index: %d\n", cr_idx);
925             }
926 
927             cr0 = s->regs[R_TYPE2_COMPARE_0_WORD_0 + cr_idx * 2];
928             cr1 = s->regs[R_TYPE2_COMPARE_0_WORD_1 + cr_idx * 2];
929             offset = FIELD_EX32(cr1, TYPE2_COMPARE_0_WORD_1, OFFSET_VALUE);
930 
931             switch (FIELD_EX32(cr1, TYPE2_COMPARE_0_WORD_1, COMPARE_OFFSET)) {
932             case 3: /* Skip UDP header */
933                 qemu_log_mask(LOG_UNIMP, "TCP compare offsets"
934                               "unimplemented - assuming UDP\n");
935                 offset += 8;
936                 /* Fallthrough */
937             case 2: /* skip the IP header */
938                 offset += 20;
939                 /* Fallthrough */
940             case 1: /* Count from after the ethertype */
941                 offset += 14;
942                 break;
943             case 0:
944                 /* Offset from start of frame */
945                 break;
946             }
947 
948             rx_cmp = rxbuf_ptr[offset] << 8 | rxbuf_ptr[offset];
949             mask = FIELD_EX32(cr0, TYPE2_COMPARE_0_WORD_0, MASK_VALUE);
950             compare = FIELD_EX32(cr0, TYPE2_COMPARE_0_WORD_0, COMPARE_VALUE);
951 
952             if ((rx_cmp & mask) == (compare & mask)) {
953                 matched = true;
954             } else {
955                 mismatched = true;
956             }
957         }
958 
959         if (matched && !mismatched) {
960             return FIELD_EX32(reg, SCREENING_TYPE2_REG0, QUEUE_NUM);
961         }
962     }
963 
964     /* We made it here, assume it's queue 0 */
965     return 0;
966 }
967 
968 static uint32_t gem_get_queue_base_addr(CadenceGEMState *s, bool tx, int q)
969 {
970     uint32_t base_addr = 0;
971 
972     switch (q) {
973     case 0:
974         base_addr = s->regs[tx ? R_TXQBASE : R_RXQBASE];
975         break;
976     case 1 ... (MAX_PRIORITY_QUEUES - 1):
977         base_addr = s->regs[(tx ? R_TRANSMIT_Q1_PTR :
978                                  R_RECEIVE_Q1_PTR) + q - 1];
979         break;
980     default:
981         g_assert_not_reached();
982     };
983 
984     return base_addr;
985 }
986 
987 static inline uint32_t gem_get_tx_queue_base_addr(CadenceGEMState *s, int q)
988 {
989     return gem_get_queue_base_addr(s, true, q);
990 }
991 
992 static inline uint32_t gem_get_rx_queue_base_addr(CadenceGEMState *s, int q)
993 {
994     return gem_get_queue_base_addr(s, false, q);
995 }
996 
997 static hwaddr gem_get_desc_addr(CadenceGEMState *s, bool tx, int q)
998 {
999     hwaddr desc_addr = 0;
1000 
1001     if (FIELD_EX32(s->regs[R_DMACFG], DMACFG, DMA_ADDR_BUS_WIDTH)) {
1002         desc_addr = s->regs[tx ? R_TBQPH : R_RBQPH];
1003     }
1004     desc_addr <<= 32;
1005     desc_addr |= tx ? s->tx_desc_addr[q] : s->rx_desc_addr[q];
1006     return desc_addr;
1007 }
1008 
1009 static hwaddr gem_get_tx_desc_addr(CadenceGEMState *s, int q)
1010 {
1011     return gem_get_desc_addr(s, true, q);
1012 }
1013 
1014 static hwaddr gem_get_rx_desc_addr(CadenceGEMState *s, int q)
1015 {
1016     return gem_get_desc_addr(s, false, q);
1017 }
1018 
1019 static void gem_get_rx_desc(CadenceGEMState *s, int q)
1020 {
1021     hwaddr desc_addr = gem_get_rx_desc_addr(s, q);
1022 
1023     DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", desc_addr);
1024 
1025     /* read current descriptor */
1026     address_space_read(&s->dma_as, desc_addr, MEMTXATTRS_UNSPECIFIED,
1027                        s->rx_desc[q],
1028                        sizeof(uint32_t) * gem_get_desc_len(s, true));
1029 
1030     /* Descriptor owned by software ? */
1031     if (rx_desc_get_ownership(s->rx_desc[q]) == 1) {
1032         DB_PRINT("descriptor 0x%" HWADDR_PRIx " owned by sw.\n", desc_addr);
1033         s->regs[R_RXSTATUS] |= R_RXSTATUS_BUF_NOT_AVAILABLE_MASK;
1034         gem_set_isr(s, q, R_ISR_RX_USED_MASK);
1035         /* Handle interrupt consequences */
1036         gem_update_int_status(s);
1037     }
1038 }
1039 
1040 /*
1041  * gem_receive:
1042  * Fit a packet handed to us by QEMU into the receive descriptor ring.
1043  */
1044 static ssize_t gem_receive(NetClientState *nc, const uint8_t *buf, size_t size)
1045 {
1046     CadenceGEMState *s = qemu_get_nic_opaque(nc);
1047     unsigned   rxbufsize, bytes_to_copy;
1048     unsigned   rxbuf_offset;
1049     uint8_t   *rxbuf_ptr;
1050     bool first_desc = true;
1051     int maf;
1052     int q = 0;
1053 
1054     /* Is this destination MAC address "for us" ? */
1055     maf = gem_mac_address_filter(s, buf);
1056     if (maf == GEM_RX_REJECT) {
1057         return size;  /* no, drop silently b/c it's not an error */
1058     }
1059 
1060     /* Discard packets with receive length error enabled ? */
1061     if (FIELD_EX32(s->regs[R_NWCFG], NWCFG, LEN_ERR_DISCARD)) {
1062         unsigned type_len;
1063 
1064         /* Fish the ethertype / length field out of the RX packet */
1065         type_len = buf[12] << 8 | buf[13];
1066         /* It is a length field, not an ethertype */
1067         if (type_len < 0x600) {
1068             if (size < type_len) {
1069                 /* discard */
1070                 return -1;
1071             }
1072         }
1073     }
1074 
1075     /*
1076      * Determine configured receive buffer offset (probably 0)
1077      */
1078     rxbuf_offset = FIELD_EX32(s->regs[R_NWCFG], NWCFG, RECV_BUF_OFFSET);
1079 
1080     /* The configure size of each receive buffer.  Determines how many
1081      * buffers needed to hold this packet.
1082      */
1083     rxbufsize = FIELD_EX32(s->regs[R_DMACFG], DMACFG, RX_BUF_SIZE);
1084     rxbufsize *= GEM_DMACFG_RBUFSZ_MUL;
1085 
1086     bytes_to_copy = size;
1087 
1088     /* Hardware allows a zero value here but warns against it. To avoid QEMU
1089      * indefinite loops we enforce a minimum value here
1090      */
1091     if (rxbufsize < GEM_DMACFG_RBUFSZ_MUL) {
1092         rxbufsize = GEM_DMACFG_RBUFSZ_MUL;
1093     }
1094 
1095     /* Pad to minimum length. Assume FCS field is stripped, logic
1096      * below will increment it to the real minimum of 64 when
1097      * not FCS stripping
1098      */
1099     if (size < 60) {
1100         size = 60;
1101     }
1102 
1103     /* Strip of FCS field ? (usually yes) */
1104     if (FIELD_EX32(s->regs[R_NWCFG], NWCFG, FCS_REMOVE)) {
1105         rxbuf_ptr = (void *)buf;
1106     } else {
1107         unsigned crc_val;
1108 
1109         if (size > MAX_FRAME_SIZE - sizeof(crc_val)) {
1110             size = MAX_FRAME_SIZE - sizeof(crc_val);
1111         }
1112         bytes_to_copy = size;
1113         /* The application wants the FCS field, which QEMU does not provide.
1114          * We must try and calculate one.
1115          */
1116 
1117         memcpy(s->rx_packet, buf, size);
1118         memset(s->rx_packet + size, 0, MAX_FRAME_SIZE - size);
1119         rxbuf_ptr = s->rx_packet;
1120         crc_val = cpu_to_le32(crc32(0, s->rx_packet, MAX(size, 60)));
1121         memcpy(s->rx_packet + size, &crc_val, sizeof(crc_val));
1122 
1123         bytes_to_copy += 4;
1124         size += 4;
1125     }
1126 
1127     DB_PRINT("config bufsize: %u packet size: %zd\n", rxbufsize, size);
1128 
1129     /* Find which queue we are targeting */
1130     q = get_queue_from_screen(s, rxbuf_ptr, rxbufsize);
1131 
1132     if (size > gem_get_max_buf_len(s, false)) {
1133         qemu_log_mask(LOG_GUEST_ERROR, "rx frame too long\n");
1134         gem_set_isr(s, q, R_ISR_AMBA_ERROR_MASK);
1135         return -1;
1136     }
1137 
1138     while (bytes_to_copy) {
1139         hwaddr desc_addr;
1140 
1141         /* Do nothing if receive is not enabled. */
1142         if (!gem_can_receive(nc)) {
1143             return -1;
1144         }
1145 
1146         DB_PRINT("copy %" PRIu32 " bytes to 0x%" PRIx64 "\n",
1147                 MIN(bytes_to_copy, rxbufsize),
1148                 rx_desc_get_buffer(s, s->rx_desc[q]));
1149 
1150         /* Copy packet data to emulated DMA buffer */
1151         address_space_write(&s->dma_as, rx_desc_get_buffer(s, s->rx_desc[q]) +
1152                                                                   rxbuf_offset,
1153                             MEMTXATTRS_UNSPECIFIED, rxbuf_ptr,
1154                             MIN(bytes_to_copy, rxbufsize));
1155         rxbuf_ptr += MIN(bytes_to_copy, rxbufsize);
1156         bytes_to_copy -= MIN(bytes_to_copy, rxbufsize);
1157 
1158         rx_desc_clear_control(s->rx_desc[q]);
1159 
1160         /* Update the descriptor.  */
1161         if (first_desc) {
1162             rx_desc_set_sof(s->rx_desc[q]);
1163             first_desc = false;
1164         }
1165         if (bytes_to_copy == 0) {
1166             rx_desc_set_eof(s->rx_desc[q]);
1167             rx_desc_set_length(s->rx_desc[q], size);
1168         }
1169         rx_desc_set_ownership(s->rx_desc[q]);
1170 
1171         switch (maf) {
1172         case GEM_RX_PROMISCUOUS_ACCEPT:
1173             break;
1174         case GEM_RX_BROADCAST_ACCEPT:
1175             rx_desc_set_broadcast(s->rx_desc[q]);
1176             break;
1177         case GEM_RX_UNICAST_HASH_ACCEPT:
1178             rx_desc_set_unicast_hash(s->rx_desc[q]);
1179             break;
1180         case GEM_RX_MULTICAST_HASH_ACCEPT:
1181             rx_desc_set_multicast_hash(s->rx_desc[q]);
1182             break;
1183         case GEM_RX_REJECT:
1184             abort();
1185         default: /* SAR */
1186             rx_desc_set_sar(s->rx_desc[q], maf);
1187         }
1188 
1189         /* Descriptor write-back.  */
1190         desc_addr = gem_get_rx_desc_addr(s, q);
1191         address_space_write(&s->dma_as, desc_addr, MEMTXATTRS_UNSPECIFIED,
1192                             s->rx_desc[q],
1193                             sizeof(uint32_t) * gem_get_desc_len(s, true));
1194 
1195         /* Next descriptor */
1196         if (rx_desc_get_wrap(s->rx_desc[q])) {
1197             DB_PRINT("wrapping RX descriptor list\n");
1198             s->rx_desc_addr[q] = gem_get_rx_queue_base_addr(s, q);
1199         } else {
1200             DB_PRINT("incrementing RX descriptor list\n");
1201             s->rx_desc_addr[q] += 4 * gem_get_desc_len(s, true);
1202         }
1203 
1204         gem_get_rx_desc(s, q);
1205     }
1206 
1207     /* Count it */
1208     gem_receive_updatestats(s, buf, size);
1209 
1210     s->regs[R_RXSTATUS] |= R_RXSTATUS_FRAME_RECEIVED_MASK;
1211     gem_set_isr(s, q, R_ISR_RECV_COMPLETE_MASK);
1212 
1213     /* Handle interrupt consequences */
1214     gem_update_int_status(s);
1215 
1216     return size;
1217 }
1218 
1219 /*
1220  * gem_transmit_updatestats:
1221  * Increment transmit statistics.
1222  */
1223 static void gem_transmit_updatestats(CadenceGEMState *s, const uint8_t *packet,
1224                                      unsigned bytes)
1225 {
1226     uint64_t octets;
1227 
1228     /* Total octets (bytes) transmitted */
1229     octets = ((uint64_t)(s->regs[R_OCTTXLO]) << 32) |
1230              s->regs[R_OCTTXHI];
1231     octets += bytes;
1232     s->regs[R_OCTTXLO] = octets >> 32;
1233     s->regs[R_OCTTXHI] = octets;
1234 
1235     /* Error-free Frames transmitted */
1236     s->regs[R_TXCNT]++;
1237 
1238     /* Error-free Broadcast Frames counter */
1239     if (!memcmp(packet, broadcast_addr, 6)) {
1240         s->regs[R_TXBCNT]++;
1241     }
1242 
1243     /* Error-free Multicast Frames counter */
1244     if (packet[0] == 0x01) {
1245         s->regs[R_TXMCNT]++;
1246     }
1247 
1248     if (bytes <= 64) {
1249         s->regs[R_TX64CNT]++;
1250     } else if (bytes <= 127) {
1251         s->regs[R_TX65CNT]++;
1252     } else if (bytes <= 255) {
1253         s->regs[R_TX128CNT]++;
1254     } else if (bytes <= 511) {
1255         s->regs[R_TX256CNT]++;
1256     } else if (bytes <= 1023) {
1257         s->regs[R_TX512CNT]++;
1258     } else if (bytes <= 1518) {
1259         s->regs[R_TX1024CNT]++;
1260     } else {
1261         s->regs[R_TX1519CNT]++;
1262     }
1263 }
1264 
1265 /*
1266  * gem_transmit:
1267  * Fish packets out of the descriptor ring and feed them to QEMU
1268  */
1269 static void gem_transmit(CadenceGEMState *s)
1270 {
1271     uint32_t desc[DESC_MAX_NUM_WORDS];
1272     hwaddr packet_desc_addr;
1273     uint8_t     *p;
1274     unsigned    total_bytes;
1275     int q = 0;
1276 
1277     /* Do nothing if transmit is not enabled. */
1278     if (!FIELD_EX32(s->regs[R_NWCTRL], NWCTRL, ENABLE_TRANSMIT)) {
1279         return;
1280     }
1281 
1282     DB_PRINT("\n");
1283 
1284     /* The packet we will hand off to QEMU.
1285      * Packets scattered across multiple descriptors are gathered to this
1286      * one contiguous buffer first.
1287      */
1288     p = s->tx_packet;
1289     total_bytes = 0;
1290 
1291     for (q = s->num_priority_queues - 1; q >= 0; q--) {
1292         /* read current descriptor */
1293         packet_desc_addr = gem_get_tx_desc_addr(s, q);
1294 
1295         DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr);
1296         address_space_read(&s->dma_as, packet_desc_addr,
1297                            MEMTXATTRS_UNSPECIFIED, desc,
1298                            sizeof(uint32_t) * gem_get_desc_len(s, false));
1299         /* Handle all descriptors owned by hardware */
1300         while (tx_desc_get_used(desc) == 0) {
1301 
1302             /* Do nothing if transmit is not enabled. */
1303             if (!FIELD_EX32(s->regs[R_NWCTRL], NWCTRL, ENABLE_TRANSMIT)) {
1304                 return;
1305             }
1306             print_gem_tx_desc(desc, q);
1307 
1308             /* The real hardware would eat this (and possibly crash).
1309              * For QEMU let's lend a helping hand.
1310              */
1311             if ((tx_desc_get_buffer(s, desc) == 0) ||
1312                 (tx_desc_get_length(desc) == 0)) {
1313                 DB_PRINT("Invalid TX descriptor @ 0x%" HWADDR_PRIx "\n",
1314                          packet_desc_addr);
1315                 break;
1316             }
1317 
1318             if (tx_desc_get_length(desc) > gem_get_max_buf_len(s, true) -
1319                                                (p - s->tx_packet)) {
1320                 qemu_log_mask(LOG_GUEST_ERROR, "TX descriptor @ 0x%" \
1321                          HWADDR_PRIx " too large: size 0x%x space 0x%zx\n",
1322                          packet_desc_addr, tx_desc_get_length(desc),
1323                          gem_get_max_buf_len(s, true) - (p - s->tx_packet));
1324                 gem_set_isr(s, q, R_ISR_AMBA_ERROR_MASK);
1325                 break;
1326             }
1327 
1328             /* Gather this fragment of the packet from "dma memory" to our
1329              * contig buffer.
1330              */
1331             address_space_read(&s->dma_as, tx_desc_get_buffer(s, desc),
1332                                MEMTXATTRS_UNSPECIFIED,
1333                                p, tx_desc_get_length(desc));
1334             p += tx_desc_get_length(desc);
1335             total_bytes += tx_desc_get_length(desc);
1336 
1337             /* Last descriptor for this packet; hand the whole thing off */
1338             if (tx_desc_get_last(desc)) {
1339                 uint32_t desc_first[DESC_MAX_NUM_WORDS];
1340                 hwaddr desc_addr = gem_get_tx_desc_addr(s, q);
1341 
1342                 /* Modify the 1st descriptor of this packet to be owned by
1343                  * the processor.
1344                  */
1345                 address_space_read(&s->dma_as, desc_addr,
1346                                    MEMTXATTRS_UNSPECIFIED, desc_first,
1347                                    sizeof(desc_first));
1348                 tx_desc_set_used(desc_first);
1349                 address_space_write(&s->dma_as, desc_addr,
1350                                     MEMTXATTRS_UNSPECIFIED, desc_first,
1351                                     sizeof(desc_first));
1352                 /* Advance the hardware current descriptor past this packet */
1353                 if (tx_desc_get_wrap(desc)) {
1354                     s->tx_desc_addr[q] = gem_get_tx_queue_base_addr(s, q);
1355                 } else {
1356                     s->tx_desc_addr[q] = packet_desc_addr +
1357                                          4 * gem_get_desc_len(s, false);
1358                 }
1359                 DB_PRINT("TX descriptor next: 0x%08x\n", s->tx_desc_addr[q]);
1360 
1361                 s->regs[R_TXSTATUS] |= R_TXSTATUS_TRANSMIT_COMPLETE_MASK;
1362                 gem_set_isr(s, q, R_ISR_XMIT_COMPLETE_MASK);
1363 
1364                 /* Handle interrupt consequences */
1365                 gem_update_int_status(s);
1366 
1367                 /* Is checksum offload enabled? */
1368                 if (FIELD_EX32(s->regs[R_DMACFG], DMACFG, TX_PBUF_CSUM_OFFLOAD)) {
1369                     net_checksum_calculate(s->tx_packet, total_bytes, CSUM_ALL);
1370                 }
1371 
1372                 /* Update MAC statistics */
1373                 gem_transmit_updatestats(s, s->tx_packet, total_bytes);
1374 
1375                 /* Send the packet somewhere */
1376                 if (s->phy_loop || FIELD_EX32(s->regs[R_NWCTRL], NWCTRL,
1377                                               LOOPBACK_LOCAL)) {
1378                     qemu_receive_packet(qemu_get_queue(s->nic), s->tx_packet,
1379                                         total_bytes);
1380                 } else {
1381                     qemu_send_packet(qemu_get_queue(s->nic), s->tx_packet,
1382                                      total_bytes);
1383                 }
1384 
1385                 /* Prepare for next packet */
1386                 p = s->tx_packet;
1387                 total_bytes = 0;
1388             }
1389 
1390             /* read next descriptor */
1391             if (tx_desc_get_wrap(desc)) {
1392                 if (FIELD_EX32(s->regs[R_DMACFG], DMACFG, DMA_ADDR_BUS_WIDTH)) {
1393                     packet_desc_addr = s->regs[R_TBQPH];
1394                     packet_desc_addr <<= 32;
1395                 } else {
1396                     packet_desc_addr = 0;
1397                 }
1398                 packet_desc_addr |= gem_get_tx_queue_base_addr(s, q);
1399             } else {
1400                 packet_desc_addr += 4 * gem_get_desc_len(s, false);
1401             }
1402             DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr);
1403             address_space_read(&s->dma_as, packet_desc_addr,
1404                                MEMTXATTRS_UNSPECIFIED, desc,
1405                                sizeof(uint32_t) * gem_get_desc_len(s, false));
1406         }
1407 
1408         if (tx_desc_get_used(desc)) {
1409             s->regs[R_TXSTATUS] |= R_TXSTATUS_USED_BIT_READ_MASK;
1410             /* IRQ TXUSED is defined only for queue 0 */
1411             if (q == 0) {
1412                 gem_set_isr(s, 0, R_ISR_TX_USED_MASK);
1413             }
1414             gem_update_int_status(s);
1415         }
1416     }
1417 }
1418 
1419 static void gem_phy_reset(CadenceGEMState *s)
1420 {
1421     memset(&s->phy_regs[0], 0, sizeof(s->phy_regs));
1422     s->phy_regs[PHY_REG_CONTROL] = 0x1140;
1423     s->phy_regs[PHY_REG_STATUS] = 0x7969;
1424     s->phy_regs[PHY_REG_PHYID1] = 0x0141;
1425     s->phy_regs[PHY_REG_PHYID2] = 0x0CC2;
1426     s->phy_regs[PHY_REG_ANEGADV] = 0x01E1;
1427     s->phy_regs[PHY_REG_LINKPABIL] = 0xCDE1;
1428     s->phy_regs[PHY_REG_ANEGEXP] = 0x000F;
1429     s->phy_regs[PHY_REG_NEXTP] = 0x2001;
1430     s->phy_regs[PHY_REG_LINKPNEXTP] = 0x40E6;
1431     s->phy_regs[PHY_REG_100BTCTRL] = 0x0300;
1432     s->phy_regs[PHY_REG_1000BTSTAT] = 0x7C00;
1433     s->phy_regs[PHY_REG_EXTSTAT] = 0x3000;
1434     s->phy_regs[PHY_REG_PHYSPCFC_CTL] = 0x0078;
1435     s->phy_regs[PHY_REG_PHYSPCFC_ST] = 0x7C00;
1436     s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL] = 0x0C60;
1437     s->phy_regs[PHY_REG_LED] = 0x4100;
1438     s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL2] = 0x000A;
1439     s->phy_regs[PHY_REG_EXT_PHYSPCFC_ST] = 0x848B;
1440 
1441     phy_update_link(s);
1442 }
1443 
1444 static void gem_reset(DeviceState *d)
1445 {
1446     int i;
1447     CadenceGEMState *s = CADENCE_GEM(d);
1448     const uint8_t *a;
1449     uint32_t queues_mask = 0;
1450 
1451     DB_PRINT("\n");
1452 
1453     /* Set post reset register values */
1454     memset(&s->regs[0], 0, sizeof(s->regs));
1455     s->regs[R_NWCFG] = 0x00080000;
1456     s->regs[R_NWSTATUS] = 0x00000006;
1457     s->regs[R_DMACFG] = 0x00020784;
1458     s->regs[R_IMR] = 0x07ffffff;
1459     s->regs[R_TXPAUSE] = 0x0000ffff;
1460     s->regs[R_TXPARTIALSF] = 0x000003ff;
1461     s->regs[R_RXPARTIALSF] = 0x000003ff;
1462     s->regs[R_MODID] = s->revision;
1463     s->regs[R_DESCONF] = 0x02D00111;
1464     s->regs[R_DESCONF2] = 0x2ab10000 | s->jumbo_max_len;
1465     s->regs[R_DESCONF5] = 0x002f2045;
1466     s->regs[R_DESCONF6] = R_DESCONF6_DMA_ADDR_64B_MASK;
1467     s->regs[R_INT_Q1_MASK] = 0x00000CE6;
1468     s->regs[R_JUMBO_MAX_LEN] = s->jumbo_max_len;
1469 
1470     if (s->num_priority_queues > 1) {
1471         queues_mask = MAKE_64BIT_MASK(1, s->num_priority_queues - 1);
1472         s->regs[R_DESCONF6] |= queues_mask;
1473     }
1474 
1475     /* Set MAC address */
1476     a = &s->conf.macaddr.a[0];
1477     s->regs[R_SPADDR1LO] = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24);
1478     s->regs[R_SPADDR1HI] = a[4] | (a[5] << 8);
1479 
1480     for (i = 0; i < 4; i++) {
1481         s->sar_active[i] = false;
1482     }
1483 
1484     gem_phy_reset(s);
1485 
1486     gem_update_int_status(s);
1487 }
1488 
1489 static uint16_t gem_phy_read(CadenceGEMState *s, unsigned reg_num)
1490 {
1491     DB_PRINT("reg: %d value: 0x%04x\n", reg_num, s->phy_regs[reg_num]);
1492     return s->phy_regs[reg_num];
1493 }
1494 
1495 static void gem_phy_write(CadenceGEMState *s, unsigned reg_num, uint16_t val)
1496 {
1497     DB_PRINT("reg: %d value: 0x%04x\n", reg_num, val);
1498 
1499     switch (reg_num) {
1500     case PHY_REG_CONTROL:
1501         if (val & PHY_REG_CONTROL_RST) {
1502             /* Phy reset */
1503             gem_phy_reset(s);
1504             val &= ~(PHY_REG_CONTROL_RST | PHY_REG_CONTROL_LOOP);
1505             s->phy_loop = 0;
1506         }
1507         if (val & PHY_REG_CONTROL_ANEG) {
1508             /* Complete autonegotiation immediately */
1509             val &= ~(PHY_REG_CONTROL_ANEG | PHY_REG_CONTROL_ANRESTART);
1510             s->phy_regs[PHY_REG_STATUS] |= PHY_REG_STATUS_ANEGCMPL;
1511         }
1512         if (val & PHY_REG_CONTROL_LOOP) {
1513             DB_PRINT("PHY placed in loopback\n");
1514             s->phy_loop = 1;
1515         } else {
1516             s->phy_loop = 0;
1517         }
1518         break;
1519     }
1520     s->phy_regs[reg_num] = val;
1521 }
1522 
1523 /*
1524  * gem_read32:
1525  * Read a GEM register.
1526  */
1527 static uint64_t gem_read(void *opaque, hwaddr offset, unsigned size)
1528 {
1529     CadenceGEMState *s;
1530     uint32_t retval;
1531     s = opaque;
1532 
1533     offset >>= 2;
1534     retval = s->regs[offset];
1535 
1536     DB_PRINT("offset: 0x%04x read: 0x%08x\n", (unsigned)offset*4, retval);
1537 
1538     switch (offset) {
1539     case R_ISR:
1540         DB_PRINT("lowering irqs on ISR read\n");
1541         /* The interrupts get updated at the end of the function. */
1542         break;
1543     case R_PHYMNTNC:
1544         if (retval & GEM_PHYMNTNC_OP_R) {
1545             uint32_t phy_addr, reg_num;
1546 
1547             phy_addr = (retval & GEM_PHYMNTNC_ADDR) >> GEM_PHYMNTNC_ADDR_SHFT;
1548             if (phy_addr == s->phy_addr) {
1549                 reg_num = (retval & GEM_PHYMNTNC_REG) >> GEM_PHYMNTNC_REG_SHIFT;
1550                 retval &= 0xFFFF0000;
1551                 retval |= gem_phy_read(s, reg_num);
1552             } else {
1553                 retval |= 0xFFFF; /* No device at this address */
1554             }
1555         }
1556         break;
1557     }
1558 
1559     /* Squash read to clear bits */
1560     s->regs[offset] &= ~(s->regs_rtc[offset]);
1561 
1562     /* Do not provide write only bits */
1563     retval &= ~(s->regs_wo[offset]);
1564 
1565     DB_PRINT("0x%08x\n", retval);
1566     gem_update_int_status(s);
1567     return retval;
1568 }
1569 
1570 /*
1571  * gem_write32:
1572  * Write a GEM register.
1573  */
1574 static void gem_write(void *opaque, hwaddr offset, uint64_t val,
1575         unsigned size)
1576 {
1577     CadenceGEMState *s = (CadenceGEMState *)opaque;
1578     uint32_t readonly;
1579     int i;
1580 
1581     DB_PRINT("offset: 0x%04x write: 0x%08x ", (unsigned)offset, (unsigned)val);
1582     offset >>= 2;
1583 
1584     /* Squash bits which are read only in write value */
1585     val &= ~(s->regs_ro[offset]);
1586     /* Preserve (only) bits which are read only and wtc in register */
1587     readonly = s->regs[offset] & (s->regs_ro[offset] | s->regs_w1c[offset]);
1588 
1589     /* Copy register write to backing store */
1590     s->regs[offset] = (val & ~s->regs_w1c[offset]) | readonly;
1591 
1592     /* do w1c */
1593     s->regs[offset] &= ~(s->regs_w1c[offset] & val);
1594 
1595     /* Handle register write side effects */
1596     switch (offset) {
1597     case R_NWCTRL:
1598         if (FIELD_EX32(val, NWCTRL, ENABLE_RECEIVE)) {
1599             for (i = 0; i < s->num_priority_queues; ++i) {
1600                 gem_get_rx_desc(s, i);
1601             }
1602         }
1603         if (FIELD_EX32(val, NWCTRL, TRANSMIT_START)) {
1604             gem_transmit(s);
1605         }
1606         if (!(FIELD_EX32(val, NWCTRL, ENABLE_TRANSMIT))) {
1607             /* Reset to start of Q when transmit disabled. */
1608             for (i = 0; i < s->num_priority_queues; i++) {
1609                 s->tx_desc_addr[i] = gem_get_tx_queue_base_addr(s, i);
1610             }
1611         }
1612         if (gem_can_receive(qemu_get_queue(s->nic))) {
1613             qemu_flush_queued_packets(qemu_get_queue(s->nic));
1614         }
1615         break;
1616 
1617     case R_TXSTATUS:
1618         gem_update_int_status(s);
1619         break;
1620     case R_RXQBASE:
1621         s->rx_desc_addr[0] = val;
1622         break;
1623     case R_RECEIVE_Q1_PTR ... R_RECEIVE_Q7_PTR:
1624         s->rx_desc_addr[offset - R_RECEIVE_Q1_PTR + 1] = val;
1625         break;
1626     case R_TXQBASE:
1627         s->tx_desc_addr[0] = val;
1628         break;
1629     case R_TRANSMIT_Q1_PTR ... R_TRANSMIT_Q7_PTR:
1630         s->tx_desc_addr[offset - R_TRANSMIT_Q1_PTR + 1] = val;
1631         break;
1632     case R_RXSTATUS:
1633         gem_update_int_status(s);
1634         break;
1635     case R_IER:
1636         s->regs[R_IMR] &= ~val;
1637         gem_update_int_status(s);
1638         break;
1639     case R_JUMBO_MAX_LEN:
1640         s->regs[R_JUMBO_MAX_LEN] = val & MAX_JUMBO_FRAME_SIZE_MASK;
1641         break;
1642     case R_INT_Q1_ENABLE ... R_INT_Q7_ENABLE:
1643         s->regs[R_INT_Q1_MASK + offset - R_INT_Q1_ENABLE] &= ~val;
1644         gem_update_int_status(s);
1645         break;
1646     case R_IDR:
1647         s->regs[R_IMR] |= val;
1648         gem_update_int_status(s);
1649         break;
1650     case R_INT_Q1_DISABLE ... R_INT_Q7_DISABLE:
1651         s->regs[R_INT_Q1_MASK + offset - R_INT_Q1_DISABLE] |= val;
1652         gem_update_int_status(s);
1653         break;
1654     case R_SPADDR1LO:
1655     case R_SPADDR2LO:
1656     case R_SPADDR3LO:
1657     case R_SPADDR4LO:
1658         s->sar_active[(offset - R_SPADDR1LO) / 2] = false;
1659         break;
1660     case R_SPADDR1HI:
1661     case R_SPADDR2HI:
1662     case R_SPADDR3HI:
1663     case R_SPADDR4HI:
1664         s->sar_active[(offset - R_SPADDR1HI) / 2] = true;
1665         break;
1666     case R_PHYMNTNC:
1667         if (val & GEM_PHYMNTNC_OP_W) {
1668             uint32_t phy_addr, reg_num;
1669 
1670             phy_addr = (val & GEM_PHYMNTNC_ADDR) >> GEM_PHYMNTNC_ADDR_SHFT;
1671             if (phy_addr == s->phy_addr) {
1672                 reg_num = (val & GEM_PHYMNTNC_REG) >> GEM_PHYMNTNC_REG_SHIFT;
1673                 gem_phy_write(s, reg_num, val);
1674             }
1675         }
1676         break;
1677     }
1678 
1679     DB_PRINT("newval: 0x%08x\n", s->regs[offset]);
1680 }
1681 
1682 static const MemoryRegionOps gem_ops = {
1683     .read = gem_read,
1684     .write = gem_write,
1685     .endianness = DEVICE_LITTLE_ENDIAN,
1686 };
1687 
1688 static void gem_set_link(NetClientState *nc)
1689 {
1690     CadenceGEMState *s = qemu_get_nic_opaque(nc);
1691 
1692     DB_PRINT("\n");
1693     phy_update_link(s);
1694     gem_update_int_status(s);
1695 }
1696 
1697 static NetClientInfo net_gem_info = {
1698     .type = NET_CLIENT_DRIVER_NIC,
1699     .size = sizeof(NICState),
1700     .can_receive = gem_can_receive,
1701     .receive = gem_receive,
1702     .link_status_changed = gem_set_link,
1703 };
1704 
1705 static void gem_realize(DeviceState *dev, Error **errp)
1706 {
1707     CadenceGEMState *s = CADENCE_GEM(dev);
1708     int i;
1709 
1710     address_space_init(&s->dma_as,
1711                        s->dma_mr ? s->dma_mr : get_system_memory(), "dma");
1712 
1713     if (s->num_priority_queues == 0 ||
1714         s->num_priority_queues > MAX_PRIORITY_QUEUES) {
1715         error_setg(errp, "Invalid num-priority-queues value: %" PRIx8,
1716                    s->num_priority_queues);
1717         return;
1718     } else if (s->num_type1_screeners > MAX_TYPE1_SCREENERS) {
1719         error_setg(errp, "Invalid num-type1-screeners value: %" PRIx8,
1720                    s->num_type1_screeners);
1721         return;
1722     } else if (s->num_type2_screeners > MAX_TYPE2_SCREENERS) {
1723         error_setg(errp, "Invalid num-type2-screeners value: %" PRIx8,
1724                    s->num_type2_screeners);
1725         return;
1726     }
1727 
1728     for (i = 0; i < s->num_priority_queues; ++i) {
1729         sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->irq[i]);
1730     }
1731 
1732     qemu_macaddr_default_if_unset(&s->conf.macaddr);
1733 
1734     s->nic = qemu_new_nic(&net_gem_info, &s->conf,
1735                           object_get_typename(OBJECT(dev)), dev->id, s);
1736 
1737     if (s->jumbo_max_len > MAX_FRAME_SIZE) {
1738         error_setg(errp, "jumbo-max-len is greater than %d",
1739                   MAX_FRAME_SIZE);
1740         return;
1741     }
1742 }
1743 
1744 static void gem_init(Object *obj)
1745 {
1746     CadenceGEMState *s = CADENCE_GEM(obj);
1747     DeviceState *dev = DEVICE(obj);
1748 
1749     DB_PRINT("\n");
1750 
1751     gem_init_register_masks(s);
1752     memory_region_init_io(&s->iomem, OBJECT(s), &gem_ops, s,
1753                           "enet", sizeof(s->regs));
1754 
1755     sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem);
1756 }
1757 
1758 static const VMStateDescription vmstate_cadence_gem = {
1759     .name = "cadence_gem",
1760     .version_id = 4,
1761     .minimum_version_id = 4,
1762     .fields = (VMStateField[]) {
1763         VMSTATE_UINT32_ARRAY(regs, CadenceGEMState, CADENCE_GEM_MAXREG),
1764         VMSTATE_UINT16_ARRAY(phy_regs, CadenceGEMState, 32),
1765         VMSTATE_UINT8(phy_loop, CadenceGEMState),
1766         VMSTATE_UINT32_ARRAY(rx_desc_addr, CadenceGEMState,
1767                              MAX_PRIORITY_QUEUES),
1768         VMSTATE_UINT32_ARRAY(tx_desc_addr, CadenceGEMState,
1769                              MAX_PRIORITY_QUEUES),
1770         VMSTATE_BOOL_ARRAY(sar_active, CadenceGEMState, 4),
1771         VMSTATE_END_OF_LIST(),
1772     }
1773 };
1774 
1775 static Property gem_properties[] = {
1776     DEFINE_NIC_PROPERTIES(CadenceGEMState, conf),
1777     DEFINE_PROP_UINT32("revision", CadenceGEMState, revision,
1778                        GEM_MODID_VALUE),
1779     DEFINE_PROP_UINT8("phy-addr", CadenceGEMState, phy_addr, BOARD_PHY_ADDRESS),
1780     DEFINE_PROP_UINT8("num-priority-queues", CadenceGEMState,
1781                       num_priority_queues, 1),
1782     DEFINE_PROP_UINT8("num-type1-screeners", CadenceGEMState,
1783                       num_type1_screeners, 4),
1784     DEFINE_PROP_UINT8("num-type2-screeners", CadenceGEMState,
1785                       num_type2_screeners, 4),
1786     DEFINE_PROP_UINT16("jumbo-max-len", CadenceGEMState,
1787                        jumbo_max_len, 10240),
1788     DEFINE_PROP_LINK("dma", CadenceGEMState, dma_mr,
1789                      TYPE_MEMORY_REGION, MemoryRegion *),
1790     DEFINE_PROP_END_OF_LIST(),
1791 };
1792 
1793 static void gem_class_init(ObjectClass *klass, void *data)
1794 {
1795     DeviceClass *dc = DEVICE_CLASS(klass);
1796 
1797     dc->realize = gem_realize;
1798     device_class_set_props(dc, gem_properties);
1799     dc->vmsd = &vmstate_cadence_gem;
1800     dc->reset = gem_reset;
1801 }
1802 
1803 static const TypeInfo gem_info = {
1804     .name  = TYPE_CADENCE_GEM,
1805     .parent = TYPE_SYS_BUS_DEVICE,
1806     .instance_size  = sizeof(CadenceGEMState),
1807     .instance_init = gem_init,
1808     .class_init = gem_class_init,
1809 };
1810 
1811 static void gem_register_types(void)
1812 {
1813     type_register_static(&gem_info);
1814 }
1815 
1816 type_init(gem_register_types)
1817