xref: /qemu/hw/net/rtl8139.c (revision 27a4a30e)
1 /**
2  * QEMU RTL8139 emulation
3  *
4  * Copyright (c) 2006 Igor Kovalenko
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23 
24  * Modifications:
25  *  2006-Jan-28  Mark Malakanov :   TSAD and CSCR implementation (for Windows driver)
26  *
27  *  2006-Apr-28  Juergen Lock   :   EEPROM emulation changes for FreeBSD driver
28  *                                  HW revision ID changes for FreeBSD driver
29  *
30  *  2006-Jul-01  Igor Kovalenko :   Implemented loopback mode for FreeBSD driver
31  *                                  Corrected packet transfer reassembly routine for 8139C+ mode
32  *                                  Rearranged debugging print statements
33  *                                  Implemented PCI timer interrupt (disabled by default)
34  *                                  Implemented Tally Counters, increased VM load/save version
35  *                                  Implemented IP/TCP/UDP checksum task offloading
36  *
37  *  2006-Jul-04  Igor Kovalenko :   Implemented TCP segmentation offloading
38  *                                  Fixed MTU=1500 for produced ethernet frames
39  *
40  *  2006-Jul-09  Igor Kovalenko :   Fixed TCP header length calculation while processing
41  *                                  segmentation offloading
42  *                                  Removed slirp.h dependency
43  *                                  Added rx/tx buffer reset when enabling rx/tx operation
44  *
45  *  2010-Feb-04  Frediano Ziglio:   Rewrote timer support using QEMU timer only
46  *                                  when strictly needed (required for
47  *                                  Darwin)
48  *  2011-Mar-22  Benjamin Poirier:  Implemented VLAN offloading
49  */
50 
51 /* For crc32 */
52 
53 #include "qemu/osdep.h"
54 #include <zlib.h>
55 
56 #include "hw/pci/pci.h"
57 #include "hw/qdev-properties.h"
58 #include "migration/vmstate.h"
59 #include "sysemu/dma.h"
60 #include "qemu/module.h"
61 #include "qemu/timer.h"
62 #include "net/net.h"
63 #include "net/eth.h"
64 #include "sysemu/sysemu.h"
65 
66 /* debug RTL8139 card */
67 //#define DEBUG_RTL8139 1
68 
69 #define PCI_PERIOD 30    /* 30 ns period = 33.333333 Mhz frequency */
70 
71 #define SET_MASKED(input, mask, curr) \
72     ( ( (input) & ~(mask) ) | ( (curr) & (mask) ) )
73 
74 /* arg % size for size which is a power of 2 */
75 #define MOD2(input, size) \
76     ( ( input ) & ( size - 1 )  )
77 
78 #define ETHER_TYPE_LEN 2
79 #define ETH_MTU     1500
80 
81 #define VLAN_TCI_LEN 2
82 #define VLAN_HLEN (ETHER_TYPE_LEN + VLAN_TCI_LEN)
83 
84 #if defined (DEBUG_RTL8139)
85 #  define DPRINTF(fmt, ...) \
86     do { fprintf(stderr, "RTL8139: " fmt, ## __VA_ARGS__); } while (0)
87 #else
88 static inline GCC_FMT_ATTR(1, 2) int DPRINTF(const char *fmt, ...)
89 {
90     return 0;
91 }
92 #endif
93 
94 #define TYPE_RTL8139 "rtl8139"
95 
96 #define RTL8139(obj) \
97      OBJECT_CHECK(RTL8139State, (obj), TYPE_RTL8139)
98 
99 /* Symbolic offsets to registers. */
100 enum RTL8139_registers {
101     MAC0 = 0,        /* Ethernet hardware address. */
102     MAR0 = 8,        /* Multicast filter. */
103     TxStatus0 = 0x10,/* Transmit status (Four 32bit registers). C mode only */
104                      /* Dump Tally Conter control register(64bit). C+ mode only */
105     TxAddr0 = 0x20,  /* Tx descriptors (also four 32bit). */
106     RxBuf = 0x30,
107     ChipCmd = 0x37,
108     RxBufPtr = 0x38,
109     RxBufAddr = 0x3A,
110     IntrMask = 0x3C,
111     IntrStatus = 0x3E,
112     TxConfig = 0x40,
113     RxConfig = 0x44,
114     Timer = 0x48,        /* A general-purpose counter. */
115     RxMissed = 0x4C,    /* 24 bits valid, write clears. */
116     Cfg9346 = 0x50,
117     Config0 = 0x51,
118     Config1 = 0x52,
119     FlashReg = 0x54,
120     MediaStatus = 0x58,
121     Config3 = 0x59,
122     Config4 = 0x5A,        /* absent on RTL-8139A */
123     HltClk = 0x5B,
124     MultiIntr = 0x5C,
125     PCIRevisionID = 0x5E,
126     TxSummary = 0x60, /* TSAD register. Transmit Status of All Descriptors*/
127     BasicModeCtrl = 0x62,
128     BasicModeStatus = 0x64,
129     NWayAdvert = 0x66,
130     NWayLPAR = 0x68,
131     NWayExpansion = 0x6A,
132     /* Undocumented registers, but required for proper operation. */
133     FIFOTMS = 0x70,        /* FIFO Control and test. */
134     CSCR = 0x74,        /* Chip Status and Configuration Register. */
135     PARA78 = 0x78,
136     PARA7c = 0x7c,        /* Magic transceiver parameter register. */
137     Config5 = 0xD8,        /* absent on RTL-8139A */
138     /* C+ mode */
139     TxPoll        = 0xD9,    /* Tell chip to check Tx descriptors for work */
140     RxMaxSize    = 0xDA, /* Max size of an Rx packet (8169 only) */
141     CpCmd        = 0xE0, /* C+ Command register (C+ mode only) */
142     IntrMitigate    = 0xE2,    /* rx/tx interrupt mitigation control */
143     RxRingAddrLO    = 0xE4, /* 64-bit start addr of Rx ring */
144     RxRingAddrHI    = 0xE8, /* 64-bit start addr of Rx ring */
145     TxThresh    = 0xEC, /* Early Tx threshold */
146 };
147 
148 enum ClearBitMasks {
149     MultiIntrClear = 0xF000,
150     ChipCmdClear = 0xE2,
151     Config1Clear = (1<<7)|(1<<6)|(1<<3)|(1<<2)|(1<<1),
152 };
153 
154 enum ChipCmdBits {
155     CmdReset = 0x10,
156     CmdRxEnb = 0x08,
157     CmdTxEnb = 0x04,
158     RxBufEmpty = 0x01,
159 };
160 
161 /* C+ mode */
162 enum CplusCmdBits {
163     CPlusRxVLAN   = 0x0040, /* enable receive VLAN detagging */
164     CPlusRxChkSum = 0x0020, /* enable receive checksum offloading */
165     CPlusRxEnb    = 0x0002,
166     CPlusTxEnb    = 0x0001,
167 };
168 
169 /* Interrupt register bits, using my own meaningful names. */
170 enum IntrStatusBits {
171     PCIErr = 0x8000,
172     PCSTimeout = 0x4000,
173     RxFIFOOver = 0x40,
174     RxUnderrun = 0x20, /* Packet Underrun / Link Change */
175     RxOverflow = 0x10,
176     TxErr = 0x08,
177     TxOK = 0x04,
178     RxErr = 0x02,
179     RxOK = 0x01,
180 
181     RxAckBits = RxFIFOOver | RxOverflow | RxOK,
182 };
183 
184 enum TxStatusBits {
185     TxHostOwns = 0x2000,
186     TxUnderrun = 0x4000,
187     TxStatOK = 0x8000,
188     TxOutOfWindow = 0x20000000,
189     TxAborted = 0x40000000,
190     TxCarrierLost = 0x80000000,
191 };
192 enum RxStatusBits {
193     RxMulticast = 0x8000,
194     RxPhysical = 0x4000,
195     RxBroadcast = 0x2000,
196     RxBadSymbol = 0x0020,
197     RxRunt = 0x0010,
198     RxTooLong = 0x0008,
199     RxCRCErr = 0x0004,
200     RxBadAlign = 0x0002,
201     RxStatusOK = 0x0001,
202 };
203 
204 /* Bits in RxConfig. */
205 enum rx_mode_bits {
206     AcceptErr = 0x20,
207     AcceptRunt = 0x10,
208     AcceptBroadcast = 0x08,
209     AcceptMulticast = 0x04,
210     AcceptMyPhys = 0x02,
211     AcceptAllPhys = 0x01,
212 };
213 
214 /* Bits in TxConfig. */
215 enum tx_config_bits {
216 
217         /* Interframe Gap Time. Only TxIFG96 doesn't violate IEEE 802.3 */
218         TxIFGShift = 24,
219         TxIFG84 = (0 << TxIFGShift),    /* 8.4us / 840ns (10 / 100Mbps) */
220         TxIFG88 = (1 << TxIFGShift),    /* 8.8us / 880ns (10 / 100Mbps) */
221         TxIFG92 = (2 << TxIFGShift),    /* 9.2us / 920ns (10 / 100Mbps) */
222         TxIFG96 = (3 << TxIFGShift),    /* 9.6us / 960ns (10 / 100Mbps) */
223 
224     TxLoopBack = (1 << 18) | (1 << 17), /* enable loopback test mode */
225     TxCRC = (1 << 16),    /* DISABLE appending CRC to end of Tx packets */
226     TxClearAbt = (1 << 0),    /* Clear abort (WO) */
227     TxDMAShift = 8,        /* DMA burst value (0-7) is shifted this many bits */
228     TxRetryShift = 4,    /* TXRR value (0-15) is shifted this many bits */
229 
230     TxVersionMask = 0x7C800000, /* mask out version bits 30-26, 23 */
231 };
232 
233 
234 /* Transmit Status of All Descriptors (TSAD) Register */
235 enum TSAD_bits {
236  TSAD_TOK3 = 1<<15, // TOK bit of Descriptor 3
237  TSAD_TOK2 = 1<<14, // TOK bit of Descriptor 2
238  TSAD_TOK1 = 1<<13, // TOK bit of Descriptor 1
239  TSAD_TOK0 = 1<<12, // TOK bit of Descriptor 0
240  TSAD_TUN3 = 1<<11, // TUN bit of Descriptor 3
241  TSAD_TUN2 = 1<<10, // TUN bit of Descriptor 2
242  TSAD_TUN1 = 1<<9, // TUN bit of Descriptor 1
243  TSAD_TUN0 = 1<<8, // TUN bit of Descriptor 0
244  TSAD_TABT3 = 1<<07, // TABT bit of Descriptor 3
245  TSAD_TABT2 = 1<<06, // TABT bit of Descriptor 2
246  TSAD_TABT1 = 1<<05, // TABT bit of Descriptor 1
247  TSAD_TABT0 = 1<<04, // TABT bit of Descriptor 0
248  TSAD_OWN3 = 1<<03, // OWN bit of Descriptor 3
249  TSAD_OWN2 = 1<<02, // OWN bit of Descriptor 2
250  TSAD_OWN1 = 1<<01, // OWN bit of Descriptor 1
251  TSAD_OWN0 = 1<<00, // OWN bit of Descriptor 0
252 };
253 
254 
255 /* Bits in Config1 */
256 enum Config1Bits {
257     Cfg1_PM_Enable = 0x01,
258     Cfg1_VPD_Enable = 0x02,
259     Cfg1_PIO = 0x04,
260     Cfg1_MMIO = 0x08,
261     LWAKE = 0x10,        /* not on 8139, 8139A */
262     Cfg1_Driver_Load = 0x20,
263     Cfg1_LED0 = 0x40,
264     Cfg1_LED1 = 0x80,
265     SLEEP = (1 << 1),    /* only on 8139, 8139A */
266     PWRDN = (1 << 0),    /* only on 8139, 8139A */
267 };
268 
269 /* Bits in Config3 */
270 enum Config3Bits {
271     Cfg3_FBtBEn    = (1 << 0), /* 1 = Fast Back to Back */
272     Cfg3_FuncRegEn = (1 << 1), /* 1 = enable CardBus Function registers */
273     Cfg3_CLKRUN_En = (1 << 2), /* 1 = enable CLKRUN */
274     Cfg3_CardB_En  = (1 << 3), /* 1 = enable CardBus registers */
275     Cfg3_LinkUp    = (1 << 4), /* 1 = wake up on link up */
276     Cfg3_Magic     = (1 << 5), /* 1 = wake up on Magic Packet (tm) */
277     Cfg3_PARM_En   = (1 << 6), /* 0 = software can set twister parameters */
278     Cfg3_GNTSel    = (1 << 7), /* 1 = delay 1 clock from PCI GNT signal */
279 };
280 
281 /* Bits in Config4 */
282 enum Config4Bits {
283     LWPTN = (1 << 2),    /* not on 8139, 8139A */
284 };
285 
286 /* Bits in Config5 */
287 enum Config5Bits {
288     Cfg5_PME_STS     = (1 << 0), /* 1 = PCI reset resets PME_Status */
289     Cfg5_LANWake     = (1 << 1), /* 1 = enable LANWake signal */
290     Cfg5_LDPS        = (1 << 2), /* 0 = save power when link is down */
291     Cfg5_FIFOAddrPtr = (1 << 3), /* Realtek internal SRAM testing */
292     Cfg5_UWF         = (1 << 4), /* 1 = accept unicast wakeup frame */
293     Cfg5_MWF         = (1 << 5), /* 1 = accept multicast wakeup frame */
294     Cfg5_BWF         = (1 << 6), /* 1 = accept broadcast wakeup frame */
295 };
296 
297 enum RxConfigBits {
298     /* rx fifo threshold */
299     RxCfgFIFOShift = 13,
300     RxCfgFIFONone = (7 << RxCfgFIFOShift),
301 
302     /* Max DMA burst */
303     RxCfgDMAShift = 8,
304     RxCfgDMAUnlimited = (7 << RxCfgDMAShift),
305 
306     /* rx ring buffer length */
307     RxCfgRcv8K = 0,
308     RxCfgRcv16K = (1 << 11),
309     RxCfgRcv32K = (1 << 12),
310     RxCfgRcv64K = (1 << 11) | (1 << 12),
311 
312     /* Disable packet wrap at end of Rx buffer. (not possible with 64k) */
313     RxNoWrap = (1 << 7),
314 };
315 
316 /* Twister tuning parameters from RealTek.
317    Completely undocumented, but required to tune bad links on some boards. */
318 /*
319 enum CSCRBits {
320     CSCR_LinkOKBit = 0x0400,
321     CSCR_LinkChangeBit = 0x0800,
322     CSCR_LinkStatusBits = 0x0f000,
323     CSCR_LinkDownOffCmd = 0x003c0,
324     CSCR_LinkDownCmd = 0x0f3c0,
325 */
326 enum CSCRBits {
327     CSCR_Testfun = 1<<15, /* 1 = Auto-neg speeds up internal timer, WO, def 0 */
328     CSCR_LD  = 1<<9,  /* Active low TPI link disable signal. When low, TPI still transmits link pulses and TPI stays in good link state. def 1*/
329     CSCR_HEART_BIT = 1<<8,  /* 1 = HEART BEAT enable, 0 = HEART BEAT disable. HEART BEAT function is only valid in 10Mbps mode. def 1*/
330     CSCR_JBEN = 1<<7,  /* 1 = enable jabber function. 0 = disable jabber function, def 1*/
331     CSCR_F_LINK_100 = 1<<6, /* Used to login force good link in 100Mbps for diagnostic purposes. 1 = DISABLE, 0 = ENABLE. def 1*/
332     CSCR_F_Connect  = 1<<5,  /* Assertion of this bit forces the disconnect function to be bypassed. def 0*/
333     CSCR_Con_status = 1<<3, /* This bit indicates the status of the connection. 1 = valid connected link detected; 0 = disconnected link detected. RO def 0*/
334     CSCR_Con_status_En = 1<<2, /* Assertion of this bit configures LED1 pin to indicate connection status. def 0*/
335     CSCR_PASS_SCR = 1<<0, /* Bypass Scramble, def 0*/
336 };
337 
338 enum Cfg9346Bits {
339     Cfg9346_Normal = 0x00,
340     Cfg9346_Autoload = 0x40,
341     Cfg9346_Programming = 0x80,
342     Cfg9346_ConfigWrite = 0xC0,
343 };
344 
345 typedef enum {
346     CH_8139 = 0,
347     CH_8139_K,
348     CH_8139A,
349     CH_8139A_G,
350     CH_8139B,
351     CH_8130,
352     CH_8139C,
353     CH_8100,
354     CH_8100B_8139D,
355     CH_8101,
356 } chip_t;
357 
358 enum chip_flags {
359     HasHltClk = (1 << 0),
360     HasLWake = (1 << 1),
361 };
362 
363 #define HW_REVID(b30, b29, b28, b27, b26, b23, b22) \
364     (b30<<30 | b29<<29 | b28<<28 | b27<<27 | b26<<26 | b23<<23 | b22<<22)
365 #define HW_REVID_MASK    HW_REVID(1, 1, 1, 1, 1, 1, 1)
366 
367 #define RTL8139_PCI_REVID_8139      0x10
368 #define RTL8139_PCI_REVID_8139CPLUS 0x20
369 
370 #define RTL8139_PCI_REVID           RTL8139_PCI_REVID_8139CPLUS
371 
372 /* Size is 64 * 16bit words */
373 #define EEPROM_9346_ADDR_BITS 6
374 #define EEPROM_9346_SIZE  (1 << EEPROM_9346_ADDR_BITS)
375 #define EEPROM_9346_ADDR_MASK (EEPROM_9346_SIZE - 1)
376 
377 enum Chip9346Operation
378 {
379     Chip9346_op_mask = 0xc0,          /* 10 zzzzzz */
380     Chip9346_op_read = 0x80,          /* 10 AAAAAA */
381     Chip9346_op_write = 0x40,         /* 01 AAAAAA D(15)..D(0) */
382     Chip9346_op_ext_mask = 0xf0,      /* 11 zzzzzz */
383     Chip9346_op_write_enable = 0x30,  /* 00 11zzzz */
384     Chip9346_op_write_all = 0x10,     /* 00 01zzzz */
385     Chip9346_op_write_disable = 0x00, /* 00 00zzzz */
386 };
387 
388 enum Chip9346Mode
389 {
390     Chip9346_none = 0,
391     Chip9346_enter_command_mode,
392     Chip9346_read_command,
393     Chip9346_data_read,      /* from output register */
394     Chip9346_data_write,     /* to input register, then to contents at specified address */
395     Chip9346_data_write_all, /* to input register, then filling contents */
396 };
397 
398 typedef struct EEprom9346
399 {
400     uint16_t contents[EEPROM_9346_SIZE];
401     int      mode;
402     uint32_t tick;
403     uint8_t  address;
404     uint16_t input;
405     uint16_t output;
406 
407     uint8_t eecs;
408     uint8_t eesk;
409     uint8_t eedi;
410     uint8_t eedo;
411 } EEprom9346;
412 
413 typedef struct RTL8139TallyCounters
414 {
415     /* Tally counters */
416     uint64_t   TxOk;
417     uint64_t   RxOk;
418     uint64_t   TxERR;
419     uint32_t   RxERR;
420     uint16_t   MissPkt;
421     uint16_t   FAE;
422     uint32_t   Tx1Col;
423     uint32_t   TxMCol;
424     uint64_t   RxOkPhy;
425     uint64_t   RxOkBrd;
426     uint32_t   RxOkMul;
427     uint16_t   TxAbt;
428     uint16_t   TxUndrn;
429 } RTL8139TallyCounters;
430 
431 /* Clears all tally counters */
432 static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters);
433 
434 typedef struct RTL8139State {
435     /*< private >*/
436     PCIDevice parent_obj;
437     /*< public >*/
438 
439     uint8_t phys[8]; /* mac address */
440     uint8_t mult[8]; /* multicast mask array */
441 
442     uint32_t TxStatus[4]; /* TxStatus0 in C mode*/ /* also DTCCR[0] and DTCCR[1] in C+ mode */
443     uint32_t TxAddr[4];   /* TxAddr0 */
444     uint32_t RxBuf;       /* Receive buffer */
445     uint32_t RxBufferSize;/* internal variable, receive ring buffer size in C mode */
446     uint32_t RxBufPtr;
447     uint32_t RxBufAddr;
448 
449     uint16_t IntrStatus;
450     uint16_t IntrMask;
451 
452     uint32_t TxConfig;
453     uint32_t RxConfig;
454     uint32_t RxMissed;
455 
456     uint16_t CSCR;
457 
458     uint8_t  Cfg9346;
459     uint8_t  Config0;
460     uint8_t  Config1;
461     uint8_t  Config3;
462     uint8_t  Config4;
463     uint8_t  Config5;
464 
465     uint8_t  clock_enabled;
466     uint8_t  bChipCmdState;
467 
468     uint16_t MultiIntr;
469 
470     uint16_t BasicModeCtrl;
471     uint16_t BasicModeStatus;
472     uint16_t NWayAdvert;
473     uint16_t NWayLPAR;
474     uint16_t NWayExpansion;
475 
476     uint16_t CpCmd;
477     uint8_t  TxThresh;
478 
479     NICState *nic;
480     NICConf conf;
481 
482     /* C ring mode */
483     uint32_t   currTxDesc;
484 
485     /* C+ mode */
486     uint32_t   cplus_enabled;
487 
488     uint32_t   currCPlusRxDesc;
489     uint32_t   currCPlusTxDesc;
490 
491     uint32_t   RxRingAddrLO;
492     uint32_t   RxRingAddrHI;
493 
494     EEprom9346 eeprom;
495 
496     uint32_t   TCTR;
497     uint32_t   TimerInt;
498     int64_t    TCTR_base;
499 
500     /* Tally counters */
501     RTL8139TallyCounters tally_counters;
502 
503     /* Non-persistent data */
504     uint8_t   *cplus_txbuffer;
505     int        cplus_txbuffer_len;
506     int        cplus_txbuffer_offset;
507 
508     /* PCI interrupt timer */
509     QEMUTimer *timer;
510 
511     MemoryRegion bar_io;
512     MemoryRegion bar_mem;
513 
514     /* Support migration to/from old versions */
515     int rtl8139_mmio_io_addr_dummy;
516 } RTL8139State;
517 
518 /* Writes tally counters to memory via DMA */
519 static void RTL8139TallyCounters_dma_write(RTL8139State *s, dma_addr_t tc_addr);
520 
521 static void rtl8139_set_next_tctr_time(RTL8139State *s);
522 
523 static void prom9346_decode_command(EEprom9346 *eeprom, uint8_t command)
524 {
525     DPRINTF("eeprom command 0x%02x\n", command);
526 
527     switch (command & Chip9346_op_mask)
528     {
529         case Chip9346_op_read:
530         {
531             eeprom->address = command & EEPROM_9346_ADDR_MASK;
532             eeprom->output = eeprom->contents[eeprom->address];
533             eeprom->eedo = 0;
534             eeprom->tick = 0;
535             eeprom->mode = Chip9346_data_read;
536             DPRINTF("eeprom read from address 0x%02x data=0x%04x\n",
537                 eeprom->address, eeprom->output);
538         }
539         break;
540 
541         case Chip9346_op_write:
542         {
543             eeprom->address = command & EEPROM_9346_ADDR_MASK;
544             eeprom->input = 0;
545             eeprom->tick = 0;
546             eeprom->mode = Chip9346_none; /* Chip9346_data_write */
547             DPRINTF("eeprom begin write to address 0x%02x\n",
548                 eeprom->address);
549         }
550         break;
551         default:
552             eeprom->mode = Chip9346_none;
553             switch (command & Chip9346_op_ext_mask)
554             {
555                 case Chip9346_op_write_enable:
556                     DPRINTF("eeprom write enabled\n");
557                     break;
558                 case Chip9346_op_write_all:
559                     DPRINTF("eeprom begin write all\n");
560                     break;
561                 case Chip9346_op_write_disable:
562                     DPRINTF("eeprom write disabled\n");
563                     break;
564             }
565             break;
566     }
567 }
568 
569 static void prom9346_shift_clock(EEprom9346 *eeprom)
570 {
571     int bit = eeprom->eedi?1:0;
572 
573     ++ eeprom->tick;
574 
575     DPRINTF("eeprom: tick %d eedi=%d eedo=%d\n", eeprom->tick, eeprom->eedi,
576         eeprom->eedo);
577 
578     switch (eeprom->mode)
579     {
580         case Chip9346_enter_command_mode:
581             if (bit)
582             {
583                 eeprom->mode = Chip9346_read_command;
584                 eeprom->tick = 0;
585                 eeprom->input = 0;
586                 DPRINTF("eeprom: +++ synchronized, begin command read\n");
587             }
588             break;
589 
590         case Chip9346_read_command:
591             eeprom->input = (eeprom->input << 1) | (bit & 1);
592             if (eeprom->tick == 8)
593             {
594                 prom9346_decode_command(eeprom, eeprom->input & 0xff);
595             }
596             break;
597 
598         case Chip9346_data_read:
599             eeprom->eedo = (eeprom->output & 0x8000)?1:0;
600             eeprom->output <<= 1;
601             if (eeprom->tick == 16)
602             {
603 #if 1
604         // the FreeBSD drivers (rl and re) don't explicitly toggle
605         // CS between reads (or does setting Cfg9346 to 0 count too?),
606         // so we need to enter wait-for-command state here
607                 eeprom->mode = Chip9346_enter_command_mode;
608                 eeprom->input = 0;
609                 eeprom->tick = 0;
610 
611                 DPRINTF("eeprom: +++ end of read, awaiting next command\n");
612 #else
613         // original behaviour
614                 ++eeprom->address;
615                 eeprom->address &= EEPROM_9346_ADDR_MASK;
616                 eeprom->output = eeprom->contents[eeprom->address];
617                 eeprom->tick = 0;
618 
619                 DPRINTF("eeprom: +++ read next address 0x%02x data=0x%04x\n",
620                     eeprom->address, eeprom->output);
621 #endif
622             }
623             break;
624 
625         case Chip9346_data_write:
626             eeprom->input = (eeprom->input << 1) | (bit & 1);
627             if (eeprom->tick == 16)
628             {
629                 DPRINTF("eeprom write to address 0x%02x data=0x%04x\n",
630                     eeprom->address, eeprom->input);
631 
632                 eeprom->contents[eeprom->address] = eeprom->input;
633                 eeprom->mode = Chip9346_none; /* waiting for next command after CS cycle */
634                 eeprom->tick = 0;
635                 eeprom->input = 0;
636             }
637             break;
638 
639         case Chip9346_data_write_all:
640             eeprom->input = (eeprom->input << 1) | (bit & 1);
641             if (eeprom->tick == 16)
642             {
643                 int i;
644                 for (i = 0; i < EEPROM_9346_SIZE; i++)
645                 {
646                     eeprom->contents[i] = eeprom->input;
647                 }
648                 DPRINTF("eeprom filled with data=0x%04x\n", eeprom->input);
649 
650                 eeprom->mode = Chip9346_enter_command_mode;
651                 eeprom->tick = 0;
652                 eeprom->input = 0;
653             }
654             break;
655 
656         default:
657             break;
658     }
659 }
660 
661 static int prom9346_get_wire(RTL8139State *s)
662 {
663     EEprom9346 *eeprom = &s->eeprom;
664     if (!eeprom->eecs)
665         return 0;
666 
667     return eeprom->eedo;
668 }
669 
670 /* FIXME: This should be merged into/replaced by eeprom93xx.c.  */
671 static void prom9346_set_wire(RTL8139State *s, int eecs, int eesk, int eedi)
672 {
673     EEprom9346 *eeprom = &s->eeprom;
674     uint8_t old_eecs = eeprom->eecs;
675     uint8_t old_eesk = eeprom->eesk;
676 
677     eeprom->eecs = eecs;
678     eeprom->eesk = eesk;
679     eeprom->eedi = eedi;
680 
681     DPRINTF("eeprom: +++ wires CS=%d SK=%d DI=%d DO=%d\n", eeprom->eecs,
682         eeprom->eesk, eeprom->eedi, eeprom->eedo);
683 
684     if (!old_eecs && eecs)
685     {
686         /* Synchronize start */
687         eeprom->tick = 0;
688         eeprom->input = 0;
689         eeprom->output = 0;
690         eeprom->mode = Chip9346_enter_command_mode;
691 
692         DPRINTF("=== eeprom: begin access, enter command mode\n");
693     }
694 
695     if (!eecs)
696     {
697         DPRINTF("=== eeprom: end access\n");
698         return;
699     }
700 
701     if (!old_eesk && eesk)
702     {
703         /* SK front rules */
704         prom9346_shift_clock(eeprom);
705     }
706 }
707 
708 static void rtl8139_update_irq(RTL8139State *s)
709 {
710     PCIDevice *d = PCI_DEVICE(s);
711     int isr;
712     isr = (s->IntrStatus & s->IntrMask) & 0xffff;
713 
714     DPRINTF("Set IRQ to %d (%04x %04x)\n", isr ? 1 : 0, s->IntrStatus,
715         s->IntrMask);
716 
717     pci_set_irq(d, (isr != 0));
718 }
719 
720 static int rtl8139_RxWrap(RTL8139State *s)
721 {
722     /* wrapping enabled; assume 1.5k more buffer space if size < 65536 */
723     return (s->RxConfig & (1 << 7));
724 }
725 
726 static int rtl8139_receiver_enabled(RTL8139State *s)
727 {
728     return s->bChipCmdState & CmdRxEnb;
729 }
730 
731 static int rtl8139_transmitter_enabled(RTL8139State *s)
732 {
733     return s->bChipCmdState & CmdTxEnb;
734 }
735 
736 static int rtl8139_cp_receiver_enabled(RTL8139State *s)
737 {
738     return s->CpCmd & CPlusRxEnb;
739 }
740 
741 static int rtl8139_cp_transmitter_enabled(RTL8139State *s)
742 {
743     return s->CpCmd & CPlusTxEnb;
744 }
745 
746 static void rtl8139_write_buffer(RTL8139State *s, const void *buf, int size)
747 {
748     PCIDevice *d = PCI_DEVICE(s);
749 
750     if (s->RxBufAddr + size > s->RxBufferSize)
751     {
752         int wrapped = MOD2(s->RxBufAddr + size, s->RxBufferSize);
753 
754         /* write packet data */
755         if (wrapped && !(s->RxBufferSize < 65536 && rtl8139_RxWrap(s)))
756         {
757             DPRINTF(">>> rx packet wrapped in buffer at %d\n", size - wrapped);
758 
759             if (size > wrapped)
760             {
761                 pci_dma_write(d, s->RxBuf + s->RxBufAddr,
762                               buf, size-wrapped);
763             }
764 
765             /* reset buffer pointer */
766             s->RxBufAddr = 0;
767 
768             pci_dma_write(d, s->RxBuf + s->RxBufAddr,
769                           buf + (size-wrapped), wrapped);
770 
771             s->RxBufAddr = wrapped;
772 
773             return;
774         }
775     }
776 
777     /* non-wrapping path or overwrapping enabled */
778     pci_dma_write(d, s->RxBuf + s->RxBufAddr, buf, size);
779 
780     s->RxBufAddr += size;
781 }
782 
783 #define MIN_BUF_SIZE 60
784 static inline dma_addr_t rtl8139_addr64(uint32_t low, uint32_t high)
785 {
786     return low | ((uint64_t)high << 32);
787 }
788 
789 /* Workaround for buggy guest driver such as linux who allocates rx
790  * rings after the receiver were enabled. */
791 static bool rtl8139_cp_rx_valid(RTL8139State *s)
792 {
793     return !(s->RxRingAddrLO == 0 && s->RxRingAddrHI == 0);
794 }
795 
796 static int rtl8139_can_receive(NetClientState *nc)
797 {
798     RTL8139State *s = qemu_get_nic_opaque(nc);
799     int avail;
800 
801     /* Receive (drop) packets if card is disabled.  */
802     if (!s->clock_enabled)
803       return 1;
804     if (!rtl8139_receiver_enabled(s))
805       return 1;
806 
807     if (rtl8139_cp_receiver_enabled(s) && rtl8139_cp_rx_valid(s)) {
808         /* ??? Flow control not implemented in c+ mode.
809            This is a hack to work around slirp deficiencies anyway.  */
810         return 1;
811     } else {
812         avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr,
813                      s->RxBufferSize);
814         return (avail == 0 || avail >= 1514 || (s->IntrMask & RxOverflow));
815     }
816 }
817 
818 static ssize_t rtl8139_do_receive(NetClientState *nc, const uint8_t *buf, size_t size_, int do_interrupt)
819 {
820     RTL8139State *s = qemu_get_nic_opaque(nc);
821     PCIDevice *d = PCI_DEVICE(s);
822     /* size is the length of the buffer passed to the driver */
823     size_t size = size_;
824     const uint8_t *dot1q_buf = NULL;
825 
826     uint32_t packet_header = 0;
827 
828     uint8_t buf1[MIN_BUF_SIZE + VLAN_HLEN];
829     static const uint8_t broadcast_macaddr[6] =
830         { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
831 
832     DPRINTF(">>> received len=%zu\n", size);
833 
834     /* test if board clock is stopped */
835     if (!s->clock_enabled)
836     {
837         DPRINTF("stopped ==========================\n");
838         return -1;
839     }
840 
841     /* first check if receiver is enabled */
842 
843     if (!rtl8139_receiver_enabled(s))
844     {
845         DPRINTF("receiver disabled ================\n");
846         return -1;
847     }
848 
849     /* XXX: check this */
850     if (s->RxConfig & AcceptAllPhys) {
851         /* promiscuous: receive all */
852         DPRINTF(">>> packet received in promiscuous mode\n");
853 
854     } else {
855         if (!memcmp(buf,  broadcast_macaddr, 6)) {
856             /* broadcast address */
857             if (!(s->RxConfig & AcceptBroadcast))
858             {
859                 DPRINTF(">>> broadcast packet rejected\n");
860 
861                 /* update tally counter */
862                 ++s->tally_counters.RxERR;
863 
864                 return size;
865             }
866 
867             packet_header |= RxBroadcast;
868 
869             DPRINTF(">>> broadcast packet received\n");
870 
871             /* update tally counter */
872             ++s->tally_counters.RxOkBrd;
873 
874         } else if (buf[0] & 0x01) {
875             /* multicast */
876             if (!(s->RxConfig & AcceptMulticast))
877             {
878                 DPRINTF(">>> multicast packet rejected\n");
879 
880                 /* update tally counter */
881                 ++s->tally_counters.RxERR;
882 
883                 return size;
884             }
885 
886             int mcast_idx = net_crc32(buf, ETH_ALEN) >> 26;
887 
888             if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
889             {
890                 DPRINTF(">>> multicast address mismatch\n");
891 
892                 /* update tally counter */
893                 ++s->tally_counters.RxERR;
894 
895                 return size;
896             }
897 
898             packet_header |= RxMulticast;
899 
900             DPRINTF(">>> multicast packet received\n");
901 
902             /* update tally counter */
903             ++s->tally_counters.RxOkMul;
904 
905         } else if (s->phys[0] == buf[0] &&
906                    s->phys[1] == buf[1] &&
907                    s->phys[2] == buf[2] &&
908                    s->phys[3] == buf[3] &&
909                    s->phys[4] == buf[4] &&
910                    s->phys[5] == buf[5]) {
911             /* match */
912             if (!(s->RxConfig & AcceptMyPhys))
913             {
914                 DPRINTF(">>> rejecting physical address matching packet\n");
915 
916                 /* update tally counter */
917                 ++s->tally_counters.RxERR;
918 
919                 return size;
920             }
921 
922             packet_header |= RxPhysical;
923 
924             DPRINTF(">>> physical address matching packet received\n");
925 
926             /* update tally counter */
927             ++s->tally_counters.RxOkPhy;
928 
929         } else {
930 
931             DPRINTF(">>> unknown packet\n");
932 
933             /* update tally counter */
934             ++s->tally_counters.RxERR;
935 
936             return size;
937         }
938     }
939 
940     /* if too small buffer, then expand it
941      * Include some tailroom in case a vlan tag is later removed. */
942     if (size < MIN_BUF_SIZE + VLAN_HLEN) {
943         memcpy(buf1, buf, size);
944         memset(buf1 + size, 0, MIN_BUF_SIZE + VLAN_HLEN - size);
945         buf = buf1;
946         if (size < MIN_BUF_SIZE) {
947             size = MIN_BUF_SIZE;
948         }
949     }
950 
951     if (rtl8139_cp_receiver_enabled(s))
952     {
953         if (!rtl8139_cp_rx_valid(s)) {
954             return size;
955         }
956 
957         DPRINTF("in C+ Rx mode ================\n");
958 
959         /* begin C+ receiver mode */
960 
961 /* w0 ownership flag */
962 #define CP_RX_OWN (1<<31)
963 /* w0 end of ring flag */
964 #define CP_RX_EOR (1<<30)
965 /* w0 bits 0...12 : buffer size */
966 #define CP_RX_BUFFER_SIZE_MASK ((1<<13) - 1)
967 /* w1 tag available flag */
968 #define CP_RX_TAVA (1<<16)
969 /* w1 bits 0...15 : VLAN tag */
970 #define CP_RX_VLAN_TAG_MASK ((1<<16) - 1)
971 /* w2 low  32bit of Rx buffer ptr */
972 /* w3 high 32bit of Rx buffer ptr */
973 
974         int descriptor = s->currCPlusRxDesc;
975         dma_addr_t cplus_rx_ring_desc;
976 
977         cplus_rx_ring_desc = rtl8139_addr64(s->RxRingAddrLO, s->RxRingAddrHI);
978         cplus_rx_ring_desc += 16 * descriptor;
979 
980         DPRINTF("+++ C+ mode reading RX descriptor %d from host memory at "
981             "%08x %08x = "DMA_ADDR_FMT"\n", descriptor, s->RxRingAddrHI,
982             s->RxRingAddrLO, cplus_rx_ring_desc);
983 
984         uint32_t val, rxdw0,rxdw1,rxbufLO,rxbufHI;
985 
986         pci_dma_read(d, cplus_rx_ring_desc, &val, 4);
987         rxdw0 = le32_to_cpu(val);
988         pci_dma_read(d, cplus_rx_ring_desc+4, &val, 4);
989         rxdw1 = le32_to_cpu(val);
990         pci_dma_read(d, cplus_rx_ring_desc+8, &val, 4);
991         rxbufLO = le32_to_cpu(val);
992         pci_dma_read(d, cplus_rx_ring_desc+12, &val, 4);
993         rxbufHI = le32_to_cpu(val);
994 
995         DPRINTF("+++ C+ mode RX descriptor %d %08x %08x %08x %08x\n",
996             descriptor, rxdw0, rxdw1, rxbufLO, rxbufHI);
997 
998         if (!(rxdw0 & CP_RX_OWN))
999         {
1000             DPRINTF("C+ Rx mode : descriptor %d is owned by host\n",
1001                 descriptor);
1002 
1003             s->IntrStatus |= RxOverflow;
1004             ++s->RxMissed;
1005 
1006             /* update tally counter */
1007             ++s->tally_counters.RxERR;
1008             ++s->tally_counters.MissPkt;
1009 
1010             rtl8139_update_irq(s);
1011             return size_;
1012         }
1013 
1014         uint32_t rx_space = rxdw0 & CP_RX_BUFFER_SIZE_MASK;
1015 
1016         /* write VLAN info to descriptor variables. */
1017         if (s->CpCmd & CPlusRxVLAN &&
1018             lduw_be_p(&buf[ETH_ALEN * 2]) == ETH_P_VLAN) {
1019             dot1q_buf = &buf[ETH_ALEN * 2];
1020             size -= VLAN_HLEN;
1021             /* if too small buffer, use the tailroom added duing expansion */
1022             if (size < MIN_BUF_SIZE) {
1023                 size = MIN_BUF_SIZE;
1024             }
1025 
1026             rxdw1 &= ~CP_RX_VLAN_TAG_MASK;
1027             /* BE + ~le_to_cpu()~ + cpu_to_le() = BE */
1028             rxdw1 |= CP_RX_TAVA | lduw_le_p(&dot1q_buf[ETHER_TYPE_LEN]);
1029 
1030             DPRINTF("C+ Rx mode : extracted vlan tag with tci: ""%u\n",
1031                 lduw_be_p(&dot1q_buf[ETHER_TYPE_LEN]));
1032         } else {
1033             /* reset VLAN tag flag */
1034             rxdw1 &= ~CP_RX_TAVA;
1035         }
1036 
1037         /* TODO: scatter the packet over available receive ring descriptors space */
1038 
1039         if (size+4 > rx_space)
1040         {
1041             DPRINTF("C+ Rx mode : descriptor %d size %d received %zu + 4\n",
1042                 descriptor, rx_space, size);
1043 
1044             s->IntrStatus |= RxOverflow;
1045             ++s->RxMissed;
1046 
1047             /* update tally counter */
1048             ++s->tally_counters.RxERR;
1049             ++s->tally_counters.MissPkt;
1050 
1051             rtl8139_update_irq(s);
1052             return size_;
1053         }
1054 
1055         dma_addr_t rx_addr = rtl8139_addr64(rxbufLO, rxbufHI);
1056 
1057         /* receive/copy to target memory */
1058         if (dot1q_buf) {
1059             pci_dma_write(d, rx_addr, buf, 2 * ETH_ALEN);
1060             pci_dma_write(d, rx_addr + 2 * ETH_ALEN,
1061                           buf + 2 * ETH_ALEN + VLAN_HLEN,
1062                           size - 2 * ETH_ALEN);
1063         } else {
1064             pci_dma_write(d, rx_addr, buf, size);
1065         }
1066 
1067         if (s->CpCmd & CPlusRxChkSum)
1068         {
1069             /* do some packet checksumming */
1070         }
1071 
1072         /* write checksum */
1073         val = cpu_to_le32(crc32(0, buf, size_));
1074         pci_dma_write(d, rx_addr+size, (uint8_t *)&val, 4);
1075 
1076 /* first segment of received packet flag */
1077 #define CP_RX_STATUS_FS (1<<29)
1078 /* last segment of received packet flag */
1079 #define CP_RX_STATUS_LS (1<<28)
1080 /* multicast packet flag */
1081 #define CP_RX_STATUS_MAR (1<<26)
1082 /* physical-matching packet flag */
1083 #define CP_RX_STATUS_PAM (1<<25)
1084 /* broadcast packet flag */
1085 #define CP_RX_STATUS_BAR (1<<24)
1086 /* runt packet flag */
1087 #define CP_RX_STATUS_RUNT (1<<19)
1088 /* crc error flag */
1089 #define CP_RX_STATUS_CRC (1<<18)
1090 /* IP checksum error flag */
1091 #define CP_RX_STATUS_IPF (1<<15)
1092 /* UDP checksum error flag */
1093 #define CP_RX_STATUS_UDPF (1<<14)
1094 /* TCP checksum error flag */
1095 #define CP_RX_STATUS_TCPF (1<<13)
1096 
1097         /* transfer ownership to target */
1098         rxdw0 &= ~CP_RX_OWN;
1099 
1100         /* set first segment bit */
1101         rxdw0 |= CP_RX_STATUS_FS;
1102 
1103         /* set last segment bit */
1104         rxdw0 |= CP_RX_STATUS_LS;
1105 
1106         /* set received packet type flags */
1107         if (packet_header & RxBroadcast)
1108             rxdw0 |= CP_RX_STATUS_BAR;
1109         if (packet_header & RxMulticast)
1110             rxdw0 |= CP_RX_STATUS_MAR;
1111         if (packet_header & RxPhysical)
1112             rxdw0 |= CP_RX_STATUS_PAM;
1113 
1114         /* set received size */
1115         rxdw0 &= ~CP_RX_BUFFER_SIZE_MASK;
1116         rxdw0 |= (size+4);
1117 
1118         /* update ring data */
1119         val = cpu_to_le32(rxdw0);
1120         pci_dma_write(d, cplus_rx_ring_desc, (uint8_t *)&val, 4);
1121         val = cpu_to_le32(rxdw1);
1122         pci_dma_write(d, cplus_rx_ring_desc+4, (uint8_t *)&val, 4);
1123 
1124         /* update tally counter */
1125         ++s->tally_counters.RxOk;
1126 
1127         /* seek to next Rx descriptor */
1128         if (rxdw0 & CP_RX_EOR)
1129         {
1130             s->currCPlusRxDesc = 0;
1131         }
1132         else
1133         {
1134             ++s->currCPlusRxDesc;
1135         }
1136 
1137         DPRINTF("done C+ Rx mode ----------------\n");
1138 
1139     }
1140     else
1141     {
1142         DPRINTF("in ring Rx mode ================\n");
1143 
1144         /* begin ring receiver mode */
1145         int avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr, s->RxBufferSize);
1146 
1147         /* if receiver buffer is empty then avail == 0 */
1148 
1149 #define RX_ALIGN(x) (((x) + 3) & ~0x3)
1150 
1151         if (avail != 0 && RX_ALIGN(size + 8) >= avail)
1152         {
1153             DPRINTF("rx overflow: rx buffer length %d head 0x%04x "
1154                 "read 0x%04x === available 0x%04x need 0x%04zx\n",
1155                 s->RxBufferSize, s->RxBufAddr, s->RxBufPtr, avail, size + 8);
1156 
1157             s->IntrStatus |= RxOverflow;
1158             ++s->RxMissed;
1159             rtl8139_update_irq(s);
1160             return 0;
1161         }
1162 
1163         packet_header |= RxStatusOK;
1164 
1165         packet_header |= (((size+4) << 16) & 0xffff0000);
1166 
1167         /* write header */
1168         uint32_t val = cpu_to_le32(packet_header);
1169 
1170         rtl8139_write_buffer(s, (uint8_t *)&val, 4);
1171 
1172         rtl8139_write_buffer(s, buf, size);
1173 
1174         /* write checksum */
1175         val = cpu_to_le32(crc32(0, buf, size));
1176         rtl8139_write_buffer(s, (uint8_t *)&val, 4);
1177 
1178         /* correct buffer write pointer */
1179         s->RxBufAddr = MOD2(RX_ALIGN(s->RxBufAddr), s->RxBufferSize);
1180 
1181         /* now we can signal we have received something */
1182 
1183         DPRINTF("received: rx buffer length %d head 0x%04x read 0x%04x\n",
1184             s->RxBufferSize, s->RxBufAddr, s->RxBufPtr);
1185     }
1186 
1187     s->IntrStatus |= RxOK;
1188 
1189     if (do_interrupt)
1190     {
1191         rtl8139_update_irq(s);
1192     }
1193 
1194     return size_;
1195 }
1196 
1197 static ssize_t rtl8139_receive(NetClientState *nc, const uint8_t *buf, size_t size)
1198 {
1199     return rtl8139_do_receive(nc, buf, size, 1);
1200 }
1201 
1202 static void rtl8139_reset_rxring(RTL8139State *s, uint32_t bufferSize)
1203 {
1204     s->RxBufferSize = bufferSize;
1205     s->RxBufPtr  = 0;
1206     s->RxBufAddr = 0;
1207 }
1208 
1209 static void rtl8139_reset_phy(RTL8139State *s)
1210 {
1211     s->BasicModeStatus  = 0x7809;
1212     s->BasicModeStatus |= 0x0020; /* autonegotiation completed */
1213     /* preserve link state */
1214     s->BasicModeStatus |= qemu_get_queue(s->nic)->link_down ? 0 : 0x04;
1215 
1216     s->NWayAdvert    = 0x05e1; /* all modes, full duplex */
1217     s->NWayLPAR      = 0x05e1; /* all modes, full duplex */
1218     s->NWayExpansion = 0x0001; /* autonegotiation supported */
1219 
1220     s->CSCR = CSCR_F_LINK_100 | CSCR_HEART_BIT | CSCR_LD;
1221 }
1222 
1223 static void rtl8139_reset(DeviceState *d)
1224 {
1225     RTL8139State *s = RTL8139(d);
1226     int i;
1227 
1228     /* restore MAC address */
1229     memcpy(s->phys, s->conf.macaddr.a, 6);
1230     qemu_format_nic_info_str(qemu_get_queue(s->nic), s->phys);
1231 
1232     /* reset interrupt mask */
1233     s->IntrStatus = 0;
1234     s->IntrMask = 0;
1235 
1236     rtl8139_update_irq(s);
1237 
1238     /* mark all status registers as owned by host */
1239     for (i = 0; i < 4; ++i)
1240     {
1241         s->TxStatus[i] = TxHostOwns;
1242     }
1243 
1244     s->currTxDesc = 0;
1245     s->currCPlusRxDesc = 0;
1246     s->currCPlusTxDesc = 0;
1247 
1248     s->RxRingAddrLO = 0;
1249     s->RxRingAddrHI = 0;
1250 
1251     s->RxBuf = 0;
1252 
1253     rtl8139_reset_rxring(s, 8192);
1254 
1255     /* ACK the reset */
1256     s->TxConfig = 0;
1257 
1258 #if 0
1259 //    s->TxConfig |= HW_REVID(1, 0, 0, 0, 0, 0, 0); // RTL-8139  HasHltClk
1260     s->clock_enabled = 0;
1261 #else
1262     s->TxConfig |= HW_REVID(1, 1, 1, 0, 1, 1, 0); // RTL-8139C+ HasLWake
1263     s->clock_enabled = 1;
1264 #endif
1265 
1266     s->bChipCmdState = CmdReset; /* RxBufEmpty bit is calculated on read from ChipCmd */;
1267 
1268     /* set initial state data */
1269     s->Config0 = 0x0; /* No boot ROM */
1270     s->Config1 = 0xC; /* IO mapped and MEM mapped registers available */
1271     s->Config3 = 0x1; /* fast back-to-back compatible */
1272     s->Config5 = 0x0;
1273 
1274     s->CpCmd   = 0x0; /* reset C+ mode */
1275     s->cplus_enabled = 0;
1276 
1277 //    s->BasicModeCtrl = 0x3100; // 100Mbps, full duplex, autonegotiation
1278 //    s->BasicModeCtrl = 0x2100; // 100Mbps, full duplex
1279     s->BasicModeCtrl = 0x1000; // autonegotiation
1280 
1281     rtl8139_reset_phy(s);
1282 
1283     /* also reset timer and disable timer interrupt */
1284     s->TCTR = 0;
1285     s->TimerInt = 0;
1286     s->TCTR_base = 0;
1287     rtl8139_set_next_tctr_time(s);
1288 
1289     /* reset tally counters */
1290     RTL8139TallyCounters_clear(&s->tally_counters);
1291 }
1292 
1293 static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters)
1294 {
1295     counters->TxOk = 0;
1296     counters->RxOk = 0;
1297     counters->TxERR = 0;
1298     counters->RxERR = 0;
1299     counters->MissPkt = 0;
1300     counters->FAE = 0;
1301     counters->Tx1Col = 0;
1302     counters->TxMCol = 0;
1303     counters->RxOkPhy = 0;
1304     counters->RxOkBrd = 0;
1305     counters->RxOkMul = 0;
1306     counters->TxAbt = 0;
1307     counters->TxUndrn = 0;
1308 }
1309 
1310 static void RTL8139TallyCounters_dma_write(RTL8139State *s, dma_addr_t tc_addr)
1311 {
1312     PCIDevice *d = PCI_DEVICE(s);
1313     RTL8139TallyCounters *tally_counters = &s->tally_counters;
1314     uint16_t val16;
1315     uint32_t val32;
1316     uint64_t val64;
1317 
1318     val64 = cpu_to_le64(tally_counters->TxOk);
1319     pci_dma_write(d, tc_addr + 0,     (uint8_t *)&val64, 8);
1320 
1321     val64 = cpu_to_le64(tally_counters->RxOk);
1322     pci_dma_write(d, tc_addr + 8,     (uint8_t *)&val64, 8);
1323 
1324     val64 = cpu_to_le64(tally_counters->TxERR);
1325     pci_dma_write(d, tc_addr + 16,    (uint8_t *)&val64, 8);
1326 
1327     val32 = cpu_to_le32(tally_counters->RxERR);
1328     pci_dma_write(d, tc_addr + 24,    (uint8_t *)&val32, 4);
1329 
1330     val16 = cpu_to_le16(tally_counters->MissPkt);
1331     pci_dma_write(d, tc_addr + 28,    (uint8_t *)&val16, 2);
1332 
1333     val16 = cpu_to_le16(tally_counters->FAE);
1334     pci_dma_write(d, tc_addr + 30,    (uint8_t *)&val16, 2);
1335 
1336     val32 = cpu_to_le32(tally_counters->Tx1Col);
1337     pci_dma_write(d, tc_addr + 32,    (uint8_t *)&val32, 4);
1338 
1339     val32 = cpu_to_le32(tally_counters->TxMCol);
1340     pci_dma_write(d, tc_addr + 36,    (uint8_t *)&val32, 4);
1341 
1342     val64 = cpu_to_le64(tally_counters->RxOkPhy);
1343     pci_dma_write(d, tc_addr + 40,    (uint8_t *)&val64, 8);
1344 
1345     val64 = cpu_to_le64(tally_counters->RxOkBrd);
1346     pci_dma_write(d, tc_addr + 48,    (uint8_t *)&val64, 8);
1347 
1348     val32 = cpu_to_le32(tally_counters->RxOkMul);
1349     pci_dma_write(d, tc_addr + 56,    (uint8_t *)&val32, 4);
1350 
1351     val16 = cpu_to_le16(tally_counters->TxAbt);
1352     pci_dma_write(d, tc_addr + 60,    (uint8_t *)&val16, 2);
1353 
1354     val16 = cpu_to_le16(tally_counters->TxUndrn);
1355     pci_dma_write(d, tc_addr + 62,    (uint8_t *)&val16, 2);
1356 }
1357 
1358 static void rtl8139_ChipCmd_write(RTL8139State *s, uint32_t val)
1359 {
1360     DeviceState *d = DEVICE(s);
1361 
1362     val &= 0xff;
1363 
1364     DPRINTF("ChipCmd write val=0x%08x\n", val);
1365 
1366     if (val & CmdReset)
1367     {
1368         DPRINTF("ChipCmd reset\n");
1369         rtl8139_reset(d);
1370     }
1371     if (val & CmdRxEnb)
1372     {
1373         DPRINTF("ChipCmd enable receiver\n");
1374 
1375         s->currCPlusRxDesc = 0;
1376     }
1377     if (val & CmdTxEnb)
1378     {
1379         DPRINTF("ChipCmd enable transmitter\n");
1380 
1381         s->currCPlusTxDesc = 0;
1382     }
1383 
1384     /* mask unwritable bits */
1385     val = SET_MASKED(val, 0xe3, s->bChipCmdState);
1386 
1387     /* Deassert reset pin before next read */
1388     val &= ~CmdReset;
1389 
1390     s->bChipCmdState = val;
1391 }
1392 
1393 static int rtl8139_RxBufferEmpty(RTL8139State *s)
1394 {
1395     int unread = MOD2(s->RxBufferSize + s->RxBufAddr - s->RxBufPtr, s->RxBufferSize);
1396 
1397     if (unread != 0)
1398     {
1399         DPRINTF("receiver buffer data available 0x%04x\n", unread);
1400         return 0;
1401     }
1402 
1403     DPRINTF("receiver buffer is empty\n");
1404 
1405     return 1;
1406 }
1407 
1408 static uint32_t rtl8139_ChipCmd_read(RTL8139State *s)
1409 {
1410     uint32_t ret = s->bChipCmdState;
1411 
1412     if (rtl8139_RxBufferEmpty(s))
1413         ret |= RxBufEmpty;
1414 
1415     DPRINTF("ChipCmd read val=0x%04x\n", ret);
1416 
1417     return ret;
1418 }
1419 
1420 static void rtl8139_CpCmd_write(RTL8139State *s, uint32_t val)
1421 {
1422     val &= 0xffff;
1423 
1424     DPRINTF("C+ command register write(w) val=0x%04x\n", val);
1425 
1426     s->cplus_enabled = 1;
1427 
1428     /* mask unwritable bits */
1429     val = SET_MASKED(val, 0xff84, s->CpCmd);
1430 
1431     s->CpCmd = val;
1432 }
1433 
1434 static uint32_t rtl8139_CpCmd_read(RTL8139State *s)
1435 {
1436     uint32_t ret = s->CpCmd;
1437 
1438     DPRINTF("C+ command register read(w) val=0x%04x\n", ret);
1439 
1440     return ret;
1441 }
1442 
1443 static void rtl8139_IntrMitigate_write(RTL8139State *s, uint32_t val)
1444 {
1445     DPRINTF("C+ IntrMitigate register write(w) val=0x%04x\n", val);
1446 }
1447 
1448 static uint32_t rtl8139_IntrMitigate_read(RTL8139State *s)
1449 {
1450     uint32_t ret = 0;
1451 
1452     DPRINTF("C+ IntrMitigate register read(w) val=0x%04x\n", ret);
1453 
1454     return ret;
1455 }
1456 
1457 static int rtl8139_config_writable(RTL8139State *s)
1458 {
1459     if ((s->Cfg9346 & Chip9346_op_mask) == Cfg9346_ConfigWrite)
1460     {
1461         return 1;
1462     }
1463 
1464     DPRINTF("Configuration registers are write-protected\n");
1465 
1466     return 0;
1467 }
1468 
1469 static void rtl8139_BasicModeCtrl_write(RTL8139State *s, uint32_t val)
1470 {
1471     val &= 0xffff;
1472 
1473     DPRINTF("BasicModeCtrl register write(w) val=0x%04x\n", val);
1474 
1475     /* mask unwritable bits */
1476     uint32_t mask = 0xccff;
1477 
1478     if (1 || !rtl8139_config_writable(s))
1479     {
1480         /* Speed setting and autonegotiation enable bits are read-only */
1481         mask |= 0x3000;
1482         /* Duplex mode setting is read-only */
1483         mask |= 0x0100;
1484     }
1485 
1486     if (val & 0x8000) {
1487         /* Reset PHY */
1488         rtl8139_reset_phy(s);
1489     }
1490 
1491     val = SET_MASKED(val, mask, s->BasicModeCtrl);
1492 
1493     s->BasicModeCtrl = val;
1494 }
1495 
1496 static uint32_t rtl8139_BasicModeCtrl_read(RTL8139State *s)
1497 {
1498     uint32_t ret = s->BasicModeCtrl;
1499 
1500     DPRINTF("BasicModeCtrl register read(w) val=0x%04x\n", ret);
1501 
1502     return ret;
1503 }
1504 
1505 static void rtl8139_BasicModeStatus_write(RTL8139State *s, uint32_t val)
1506 {
1507     val &= 0xffff;
1508 
1509     DPRINTF("BasicModeStatus register write(w) val=0x%04x\n", val);
1510 
1511     /* mask unwritable bits */
1512     val = SET_MASKED(val, 0xff3f, s->BasicModeStatus);
1513 
1514     s->BasicModeStatus = val;
1515 }
1516 
1517 static uint32_t rtl8139_BasicModeStatus_read(RTL8139State *s)
1518 {
1519     uint32_t ret = s->BasicModeStatus;
1520 
1521     DPRINTF("BasicModeStatus register read(w) val=0x%04x\n", ret);
1522 
1523     return ret;
1524 }
1525 
1526 static void rtl8139_Cfg9346_write(RTL8139State *s, uint32_t val)
1527 {
1528     DeviceState *d = DEVICE(s);
1529 
1530     val &= 0xff;
1531 
1532     DPRINTF("Cfg9346 write val=0x%02x\n", val);
1533 
1534     /* mask unwritable bits */
1535     val = SET_MASKED(val, 0x31, s->Cfg9346);
1536 
1537     uint32_t opmode = val & 0xc0;
1538     uint32_t eeprom_val = val & 0xf;
1539 
1540     if (opmode == 0x80) {
1541         /* eeprom access */
1542         int eecs = (eeprom_val & 0x08)?1:0;
1543         int eesk = (eeprom_val & 0x04)?1:0;
1544         int eedi = (eeprom_val & 0x02)?1:0;
1545         prom9346_set_wire(s, eecs, eesk, eedi);
1546     } else if (opmode == 0x40) {
1547         /* Reset.  */
1548         val = 0;
1549         rtl8139_reset(d);
1550     }
1551 
1552     s->Cfg9346 = val;
1553 }
1554 
1555 static uint32_t rtl8139_Cfg9346_read(RTL8139State *s)
1556 {
1557     uint32_t ret = s->Cfg9346;
1558 
1559     uint32_t opmode = ret & 0xc0;
1560 
1561     if (opmode == 0x80)
1562     {
1563         /* eeprom access */
1564         int eedo = prom9346_get_wire(s);
1565         if (eedo)
1566         {
1567             ret |=  0x01;
1568         }
1569         else
1570         {
1571             ret &= ~0x01;
1572         }
1573     }
1574 
1575     DPRINTF("Cfg9346 read val=0x%02x\n", ret);
1576 
1577     return ret;
1578 }
1579 
1580 static void rtl8139_Config0_write(RTL8139State *s, uint32_t val)
1581 {
1582     val &= 0xff;
1583 
1584     DPRINTF("Config0 write val=0x%02x\n", val);
1585 
1586     if (!rtl8139_config_writable(s)) {
1587         return;
1588     }
1589 
1590     /* mask unwritable bits */
1591     val = SET_MASKED(val, 0xf8, s->Config0);
1592 
1593     s->Config0 = val;
1594 }
1595 
1596 static uint32_t rtl8139_Config0_read(RTL8139State *s)
1597 {
1598     uint32_t ret = s->Config0;
1599 
1600     DPRINTF("Config0 read val=0x%02x\n", ret);
1601 
1602     return ret;
1603 }
1604 
1605 static void rtl8139_Config1_write(RTL8139State *s, uint32_t val)
1606 {
1607     val &= 0xff;
1608 
1609     DPRINTF("Config1 write val=0x%02x\n", val);
1610 
1611     if (!rtl8139_config_writable(s)) {
1612         return;
1613     }
1614 
1615     /* mask unwritable bits */
1616     val = SET_MASKED(val, 0xC, s->Config1);
1617 
1618     s->Config1 = val;
1619 }
1620 
1621 static uint32_t rtl8139_Config1_read(RTL8139State *s)
1622 {
1623     uint32_t ret = s->Config1;
1624 
1625     DPRINTF("Config1 read val=0x%02x\n", ret);
1626 
1627     return ret;
1628 }
1629 
1630 static void rtl8139_Config3_write(RTL8139State *s, uint32_t val)
1631 {
1632     val &= 0xff;
1633 
1634     DPRINTF("Config3 write val=0x%02x\n", val);
1635 
1636     if (!rtl8139_config_writable(s)) {
1637         return;
1638     }
1639 
1640     /* mask unwritable bits */
1641     val = SET_MASKED(val, 0x8F, s->Config3);
1642 
1643     s->Config3 = val;
1644 }
1645 
1646 static uint32_t rtl8139_Config3_read(RTL8139State *s)
1647 {
1648     uint32_t ret = s->Config3;
1649 
1650     DPRINTF("Config3 read val=0x%02x\n", ret);
1651 
1652     return ret;
1653 }
1654 
1655 static void rtl8139_Config4_write(RTL8139State *s, uint32_t val)
1656 {
1657     val &= 0xff;
1658 
1659     DPRINTF("Config4 write val=0x%02x\n", val);
1660 
1661     if (!rtl8139_config_writable(s)) {
1662         return;
1663     }
1664 
1665     /* mask unwritable bits */
1666     val = SET_MASKED(val, 0x0a, s->Config4);
1667 
1668     s->Config4 = val;
1669 }
1670 
1671 static uint32_t rtl8139_Config4_read(RTL8139State *s)
1672 {
1673     uint32_t ret = s->Config4;
1674 
1675     DPRINTF("Config4 read val=0x%02x\n", ret);
1676 
1677     return ret;
1678 }
1679 
1680 static void rtl8139_Config5_write(RTL8139State *s, uint32_t val)
1681 {
1682     val &= 0xff;
1683 
1684     DPRINTF("Config5 write val=0x%02x\n", val);
1685 
1686     /* mask unwritable bits */
1687     val = SET_MASKED(val, 0x80, s->Config5);
1688 
1689     s->Config5 = val;
1690 }
1691 
1692 static uint32_t rtl8139_Config5_read(RTL8139State *s)
1693 {
1694     uint32_t ret = s->Config5;
1695 
1696     DPRINTF("Config5 read val=0x%02x\n", ret);
1697 
1698     return ret;
1699 }
1700 
1701 static void rtl8139_TxConfig_write(RTL8139State *s, uint32_t val)
1702 {
1703     if (!rtl8139_transmitter_enabled(s))
1704     {
1705         DPRINTF("transmitter disabled; no TxConfig write val=0x%08x\n", val);
1706         return;
1707     }
1708 
1709     DPRINTF("TxConfig write val=0x%08x\n", val);
1710 
1711     val = SET_MASKED(val, TxVersionMask | 0x8070f80f, s->TxConfig);
1712 
1713     s->TxConfig = val;
1714 }
1715 
1716 static void rtl8139_TxConfig_writeb(RTL8139State *s, uint32_t val)
1717 {
1718     DPRINTF("RTL8139C TxConfig via write(b) val=0x%02x\n", val);
1719 
1720     uint32_t tc = s->TxConfig;
1721     tc &= 0xFFFFFF00;
1722     tc |= (val & 0x000000FF);
1723     rtl8139_TxConfig_write(s, tc);
1724 }
1725 
1726 static uint32_t rtl8139_TxConfig_read(RTL8139State *s)
1727 {
1728     uint32_t ret = s->TxConfig;
1729 
1730     DPRINTF("TxConfig read val=0x%04x\n", ret);
1731 
1732     return ret;
1733 }
1734 
1735 static void rtl8139_RxConfig_write(RTL8139State *s, uint32_t val)
1736 {
1737     DPRINTF("RxConfig write val=0x%08x\n", val);
1738 
1739     /* mask unwritable bits */
1740     val = SET_MASKED(val, 0xf0fc0040, s->RxConfig);
1741 
1742     s->RxConfig = val;
1743 
1744     /* reset buffer size and read/write pointers */
1745     rtl8139_reset_rxring(s, 8192 << ((s->RxConfig >> 11) & 0x3));
1746 
1747     DPRINTF("RxConfig write reset buffer size to %d\n", s->RxBufferSize);
1748 }
1749 
1750 static uint32_t rtl8139_RxConfig_read(RTL8139State *s)
1751 {
1752     uint32_t ret = s->RxConfig;
1753 
1754     DPRINTF("RxConfig read val=0x%08x\n", ret);
1755 
1756     return ret;
1757 }
1758 
1759 static void rtl8139_transfer_frame(RTL8139State *s, uint8_t *buf, int size,
1760     int do_interrupt, const uint8_t *dot1q_buf)
1761 {
1762     struct iovec *iov = NULL;
1763     struct iovec vlan_iov[3];
1764 
1765     if (!size)
1766     {
1767         DPRINTF("+++ empty ethernet frame\n");
1768         return;
1769     }
1770 
1771     if (dot1q_buf && size >= ETH_ALEN * 2) {
1772         iov = (struct iovec[3]) {
1773             { .iov_base = buf, .iov_len = ETH_ALEN * 2 },
1774             { .iov_base = (void *) dot1q_buf, .iov_len = VLAN_HLEN },
1775             { .iov_base = buf + ETH_ALEN * 2,
1776                 .iov_len = size - ETH_ALEN * 2 },
1777         };
1778 
1779         memcpy(vlan_iov, iov, sizeof(vlan_iov));
1780         iov = vlan_iov;
1781     }
1782 
1783     if (TxLoopBack == (s->TxConfig & TxLoopBack))
1784     {
1785         size_t buf2_size;
1786         uint8_t *buf2;
1787 
1788         if (iov) {
1789             buf2_size = iov_size(iov, 3);
1790             buf2 = g_malloc(buf2_size);
1791             iov_to_buf(iov, 3, 0, buf2, buf2_size);
1792             buf = buf2;
1793         }
1794 
1795         DPRINTF("+++ transmit loopback mode\n");
1796         rtl8139_do_receive(qemu_get_queue(s->nic), buf, size, do_interrupt);
1797 
1798         if (iov) {
1799             g_free(buf2);
1800         }
1801     }
1802     else
1803     {
1804         if (iov) {
1805             qemu_sendv_packet(qemu_get_queue(s->nic), iov, 3);
1806         } else {
1807             qemu_send_packet(qemu_get_queue(s->nic), buf, size);
1808         }
1809     }
1810 }
1811 
1812 static int rtl8139_transmit_one(RTL8139State *s, int descriptor)
1813 {
1814     if (!rtl8139_transmitter_enabled(s))
1815     {
1816         DPRINTF("+++ cannot transmit from descriptor %d: transmitter "
1817             "disabled\n", descriptor);
1818         return 0;
1819     }
1820 
1821     if (s->TxStatus[descriptor] & TxHostOwns)
1822     {
1823         DPRINTF("+++ cannot transmit from descriptor %d: owned by host "
1824             "(%08x)\n", descriptor, s->TxStatus[descriptor]);
1825         return 0;
1826     }
1827 
1828     DPRINTF("+++ transmitting from descriptor %d\n", descriptor);
1829 
1830     PCIDevice *d = PCI_DEVICE(s);
1831     int txsize = s->TxStatus[descriptor] & 0x1fff;
1832     uint8_t txbuffer[0x2000];
1833 
1834     DPRINTF("+++ transmit reading %d bytes from host memory at 0x%08x\n",
1835         txsize, s->TxAddr[descriptor]);
1836 
1837     pci_dma_read(d, s->TxAddr[descriptor], txbuffer, txsize);
1838 
1839     /* Mark descriptor as transferred */
1840     s->TxStatus[descriptor] |= TxHostOwns;
1841     s->TxStatus[descriptor] |= TxStatOK;
1842 
1843     rtl8139_transfer_frame(s, txbuffer, txsize, 0, NULL);
1844 
1845     DPRINTF("+++ transmitted %d bytes from descriptor %d\n", txsize,
1846         descriptor);
1847 
1848     /* update interrupt */
1849     s->IntrStatus |= TxOK;
1850     rtl8139_update_irq(s);
1851 
1852     return 1;
1853 }
1854 
1855 #define TCP_HEADER_CLEAR_FLAGS(tcp, off) ((tcp)->th_offset_flags &= cpu_to_be16(~TCP_FLAGS_ONLY(off)))
1856 
1857 /* produces ones' complement sum of data */
1858 static uint16_t ones_complement_sum(uint8_t *data, size_t len)
1859 {
1860     uint32_t result = 0;
1861 
1862     for (; len > 1; data+=2, len-=2)
1863     {
1864         result += *(uint16_t*)data;
1865     }
1866 
1867     /* add the remainder byte */
1868     if (len)
1869     {
1870         uint8_t odd[2] = {*data, 0};
1871         result += *(uint16_t*)odd;
1872     }
1873 
1874     while (result>>16)
1875         result = (result & 0xffff) + (result >> 16);
1876 
1877     return result;
1878 }
1879 
1880 static uint16_t ip_checksum(void *data, size_t len)
1881 {
1882     return ~ones_complement_sum((uint8_t*)data, len);
1883 }
1884 
1885 static int rtl8139_cplus_transmit_one(RTL8139State *s)
1886 {
1887     if (!rtl8139_transmitter_enabled(s))
1888     {
1889         DPRINTF("+++ C+ mode: transmitter disabled\n");
1890         return 0;
1891     }
1892 
1893     if (!rtl8139_cp_transmitter_enabled(s))
1894     {
1895         DPRINTF("+++ C+ mode: C+ transmitter disabled\n");
1896         return 0 ;
1897     }
1898 
1899     PCIDevice *d = PCI_DEVICE(s);
1900     int descriptor = s->currCPlusTxDesc;
1901 
1902     dma_addr_t cplus_tx_ring_desc = rtl8139_addr64(s->TxAddr[0], s->TxAddr[1]);
1903 
1904     /* Normal priority ring */
1905     cplus_tx_ring_desc += 16 * descriptor;
1906 
1907     DPRINTF("+++ C+ mode reading TX descriptor %d from host memory at "
1908         "%08x %08x = 0x"DMA_ADDR_FMT"\n", descriptor, s->TxAddr[1],
1909         s->TxAddr[0], cplus_tx_ring_desc);
1910 
1911     uint32_t val, txdw0,txdw1,txbufLO,txbufHI;
1912 
1913     pci_dma_read(d, cplus_tx_ring_desc,    (uint8_t *)&val, 4);
1914     txdw0 = le32_to_cpu(val);
1915     pci_dma_read(d, cplus_tx_ring_desc+4,  (uint8_t *)&val, 4);
1916     txdw1 = le32_to_cpu(val);
1917     pci_dma_read(d, cplus_tx_ring_desc+8,  (uint8_t *)&val, 4);
1918     txbufLO = le32_to_cpu(val);
1919     pci_dma_read(d, cplus_tx_ring_desc+12, (uint8_t *)&val, 4);
1920     txbufHI = le32_to_cpu(val);
1921 
1922     DPRINTF("+++ C+ mode TX descriptor %d %08x %08x %08x %08x\n", descriptor,
1923         txdw0, txdw1, txbufLO, txbufHI);
1924 
1925 /* w0 ownership flag */
1926 #define CP_TX_OWN (1<<31)
1927 /* w0 end of ring flag */
1928 #define CP_TX_EOR (1<<30)
1929 /* first segment of received packet flag */
1930 #define CP_TX_FS (1<<29)
1931 /* last segment of received packet flag */
1932 #define CP_TX_LS (1<<28)
1933 /* large send packet flag */
1934 #define CP_TX_LGSEN (1<<27)
1935 /* large send MSS mask, bits 16...25 */
1936 #define CP_TC_LGSEN_MSS_MASK ((1 << 12) - 1)
1937 
1938 /* IP checksum offload flag */
1939 #define CP_TX_IPCS (1<<18)
1940 /* UDP checksum offload flag */
1941 #define CP_TX_UDPCS (1<<17)
1942 /* TCP checksum offload flag */
1943 #define CP_TX_TCPCS (1<<16)
1944 
1945 /* w0 bits 0...15 : buffer size */
1946 #define CP_TX_BUFFER_SIZE (1<<16)
1947 #define CP_TX_BUFFER_SIZE_MASK (CP_TX_BUFFER_SIZE - 1)
1948 /* w1 add tag flag */
1949 #define CP_TX_TAGC (1<<17)
1950 /* w1 bits 0...15 : VLAN tag (big endian) */
1951 #define CP_TX_VLAN_TAG_MASK ((1<<16) - 1)
1952 /* w2 low  32bit of Rx buffer ptr */
1953 /* w3 high 32bit of Rx buffer ptr */
1954 
1955 /* set after transmission */
1956 /* FIFO underrun flag */
1957 #define CP_TX_STATUS_UNF (1<<25)
1958 /* transmit error summary flag, valid if set any of three below */
1959 #define CP_TX_STATUS_TES (1<<23)
1960 /* out-of-window collision flag */
1961 #define CP_TX_STATUS_OWC (1<<22)
1962 /* link failure flag */
1963 #define CP_TX_STATUS_LNKF (1<<21)
1964 /* excessive collisions flag */
1965 #define CP_TX_STATUS_EXC (1<<20)
1966 
1967     if (!(txdw0 & CP_TX_OWN))
1968     {
1969         DPRINTF("C+ Tx mode : descriptor %d is owned by host\n", descriptor);
1970         return 0 ;
1971     }
1972 
1973     DPRINTF("+++ C+ Tx mode : transmitting from descriptor %d\n", descriptor);
1974 
1975     if (txdw0 & CP_TX_FS)
1976     {
1977         DPRINTF("+++ C+ Tx mode : descriptor %d is first segment "
1978             "descriptor\n", descriptor);
1979 
1980         /* reset internal buffer offset */
1981         s->cplus_txbuffer_offset = 0;
1982     }
1983 
1984     int txsize = txdw0 & CP_TX_BUFFER_SIZE_MASK;
1985     dma_addr_t tx_addr = rtl8139_addr64(txbufLO, txbufHI);
1986 
1987     /* make sure we have enough space to assemble the packet */
1988     if (!s->cplus_txbuffer)
1989     {
1990         s->cplus_txbuffer_len = CP_TX_BUFFER_SIZE;
1991         s->cplus_txbuffer = g_malloc(s->cplus_txbuffer_len);
1992         s->cplus_txbuffer_offset = 0;
1993 
1994         DPRINTF("+++ C+ mode transmission buffer allocated space %d\n",
1995             s->cplus_txbuffer_len);
1996     }
1997 
1998     if (s->cplus_txbuffer_offset + txsize >= s->cplus_txbuffer_len)
1999     {
2000         /* The spec didn't tell the maximum size, stick to CP_TX_BUFFER_SIZE */
2001         txsize = s->cplus_txbuffer_len - s->cplus_txbuffer_offset;
2002         DPRINTF("+++ C+ mode transmission buffer overrun, truncated descriptor"
2003                 "length to %d\n", txsize);
2004     }
2005 
2006     /* append more data to the packet */
2007 
2008     DPRINTF("+++ C+ mode transmit reading %d bytes from host memory at "
2009             DMA_ADDR_FMT" to offset %d\n", txsize, tx_addr,
2010             s->cplus_txbuffer_offset);
2011 
2012     pci_dma_read(d, tx_addr,
2013                  s->cplus_txbuffer + s->cplus_txbuffer_offset, txsize);
2014     s->cplus_txbuffer_offset += txsize;
2015 
2016     /* seek to next Rx descriptor */
2017     if (txdw0 & CP_TX_EOR)
2018     {
2019         s->currCPlusTxDesc = 0;
2020     }
2021     else
2022     {
2023         ++s->currCPlusTxDesc;
2024         if (s->currCPlusTxDesc >= 64)
2025             s->currCPlusTxDesc = 0;
2026     }
2027 
2028     /* transfer ownership to target */
2029     txdw0 &= ~CP_TX_OWN;
2030 
2031     /* reset error indicator bits */
2032     txdw0 &= ~CP_TX_STATUS_UNF;
2033     txdw0 &= ~CP_TX_STATUS_TES;
2034     txdw0 &= ~CP_TX_STATUS_OWC;
2035     txdw0 &= ~CP_TX_STATUS_LNKF;
2036     txdw0 &= ~CP_TX_STATUS_EXC;
2037 
2038     /* update ring data */
2039     val = cpu_to_le32(txdw0);
2040     pci_dma_write(d, cplus_tx_ring_desc, (uint8_t *)&val, 4);
2041 
2042     /* Now decide if descriptor being processed is holding the last segment of packet */
2043     if (txdw0 & CP_TX_LS)
2044     {
2045         uint8_t dot1q_buffer_space[VLAN_HLEN];
2046         uint16_t *dot1q_buffer;
2047 
2048         DPRINTF("+++ C+ Tx mode : descriptor %d is last segment descriptor\n",
2049             descriptor);
2050 
2051         /* can transfer fully assembled packet */
2052 
2053         uint8_t *saved_buffer  = s->cplus_txbuffer;
2054         int      saved_size    = s->cplus_txbuffer_offset;
2055         int      saved_buffer_len = s->cplus_txbuffer_len;
2056 
2057         /* create vlan tag */
2058         if (txdw1 & CP_TX_TAGC) {
2059             /* the vlan tag is in BE byte order in the descriptor
2060              * BE + le_to_cpu() + ~swap()~ = cpu */
2061             DPRINTF("+++ C+ Tx mode : inserting vlan tag with ""tci: %u\n",
2062                 bswap16(txdw1 & CP_TX_VLAN_TAG_MASK));
2063 
2064             dot1q_buffer = (uint16_t *) dot1q_buffer_space;
2065             dot1q_buffer[0] = cpu_to_be16(ETH_P_VLAN);
2066             /* BE + le_to_cpu() + ~cpu_to_le()~ = BE */
2067             dot1q_buffer[1] = cpu_to_le16(txdw1 & CP_TX_VLAN_TAG_MASK);
2068         } else {
2069             dot1q_buffer = NULL;
2070         }
2071 
2072         /* reset the card space to protect from recursive call */
2073         s->cplus_txbuffer = NULL;
2074         s->cplus_txbuffer_offset = 0;
2075         s->cplus_txbuffer_len = 0;
2076 
2077         if (txdw0 & (CP_TX_IPCS | CP_TX_UDPCS | CP_TX_TCPCS | CP_TX_LGSEN))
2078         {
2079             DPRINTF("+++ C+ mode offloaded task checksum\n");
2080 
2081             /* Large enough for Ethernet and IP headers? */
2082             if (saved_size < ETH_HLEN + sizeof(struct ip_header)) {
2083                 goto skip_offload;
2084             }
2085 
2086             /* ip packet header */
2087             struct ip_header *ip = NULL;
2088             int hlen = 0;
2089             uint8_t  ip_protocol = 0;
2090             uint16_t ip_data_len = 0;
2091 
2092             uint8_t *eth_payload_data = NULL;
2093             size_t   eth_payload_len  = 0;
2094 
2095             int proto = be16_to_cpu(*(uint16_t *)(saved_buffer + 12));
2096             if (proto != ETH_P_IP)
2097             {
2098                 goto skip_offload;
2099             }
2100 
2101             DPRINTF("+++ C+ mode has IP packet\n");
2102 
2103             /* Note on memory alignment: eth_payload_data is 16-bit aligned
2104              * since saved_buffer is allocated with g_malloc() and ETH_HLEN is
2105              * even.  32-bit accesses must use ldl/stl wrappers to avoid
2106              * unaligned accesses.
2107              */
2108             eth_payload_data = saved_buffer + ETH_HLEN;
2109             eth_payload_len  = saved_size   - ETH_HLEN;
2110 
2111             ip = (struct ip_header*)eth_payload_data;
2112 
2113             if (IP_HEADER_VERSION(ip) != IP_HEADER_VERSION_4) {
2114                 DPRINTF("+++ C+ mode packet has bad IP version %d "
2115                     "expected %d\n", IP_HEADER_VERSION(ip),
2116                     IP_HEADER_VERSION_4);
2117                 goto skip_offload;
2118             }
2119 
2120             hlen = IP_HDR_GET_LEN(ip);
2121             if (hlen < sizeof(struct ip_header) || hlen > eth_payload_len) {
2122                 goto skip_offload;
2123             }
2124 
2125             ip_protocol = ip->ip_p;
2126 
2127             ip_data_len = be16_to_cpu(ip->ip_len);
2128             if (ip_data_len < hlen || ip_data_len > eth_payload_len) {
2129                 goto skip_offload;
2130             }
2131             ip_data_len -= hlen;
2132 
2133             if (txdw0 & CP_TX_IPCS)
2134             {
2135                 DPRINTF("+++ C+ mode need IP checksum\n");
2136 
2137                 ip->ip_sum = 0;
2138                 ip->ip_sum = ip_checksum(ip, hlen);
2139                 DPRINTF("+++ C+ mode IP header len=%d checksum=%04x\n",
2140                     hlen, ip->ip_sum);
2141             }
2142 
2143             if ((txdw0 & CP_TX_LGSEN) && ip_protocol == IP_PROTO_TCP)
2144             {
2145                 /* Large enough for the TCP header? */
2146                 if (ip_data_len < sizeof(tcp_header)) {
2147                     goto skip_offload;
2148                 }
2149 
2150                 int large_send_mss = (txdw0 >> 16) & CP_TC_LGSEN_MSS_MASK;
2151 
2152                 DPRINTF("+++ C+ mode offloaded task TSO MTU=%d IP data %d "
2153                     "frame data %d specified MSS=%d\n", ETH_MTU,
2154                     ip_data_len, saved_size - ETH_HLEN, large_send_mss);
2155 
2156                 int tcp_send_offset = 0;
2157                 int send_count = 0;
2158 
2159                 /* maximum IP header length is 60 bytes */
2160                 uint8_t saved_ip_header[60];
2161 
2162                 /* save IP header template; data area is used in tcp checksum calculation */
2163                 memcpy(saved_ip_header, eth_payload_data, hlen);
2164 
2165                 /* a placeholder for checksum calculation routine in tcp case */
2166                 uint8_t *data_to_checksum     = eth_payload_data + hlen - 12;
2167                 //                    size_t   data_to_checksum_len = eth_payload_len  - hlen + 12;
2168 
2169                 /* pointer to TCP header */
2170                 tcp_header *p_tcp_hdr = (tcp_header*)(eth_payload_data + hlen);
2171 
2172                 int tcp_hlen = TCP_HEADER_DATA_OFFSET(p_tcp_hdr);
2173 
2174                 /* Invalid TCP data offset? */
2175                 if (tcp_hlen < sizeof(tcp_header) || tcp_hlen > ip_data_len) {
2176                     goto skip_offload;
2177                 }
2178 
2179                 /* ETH_MTU = ip header len + tcp header len + payload */
2180                 int tcp_data_len = ip_data_len - tcp_hlen;
2181                 int tcp_chunk_size = ETH_MTU - hlen - tcp_hlen;
2182 
2183                 DPRINTF("+++ C+ mode TSO IP data len %d TCP hlen %d TCP "
2184                     "data len %d TCP chunk size %d\n", ip_data_len,
2185                     tcp_hlen, tcp_data_len, tcp_chunk_size);
2186 
2187                 /* note the cycle below overwrites IP header data,
2188                    but restores it from saved_ip_header before sending packet */
2189 
2190                 int is_last_frame = 0;
2191 
2192                 for (tcp_send_offset = 0; tcp_send_offset < tcp_data_len; tcp_send_offset += tcp_chunk_size)
2193                 {
2194                     uint16_t chunk_size = tcp_chunk_size;
2195 
2196                     /* check if this is the last frame */
2197                     if (tcp_send_offset + tcp_chunk_size >= tcp_data_len)
2198                     {
2199                         is_last_frame = 1;
2200                         chunk_size = tcp_data_len - tcp_send_offset;
2201                     }
2202 
2203                     DPRINTF("+++ C+ mode TSO TCP seqno %08x\n",
2204                             ldl_be_p(&p_tcp_hdr->th_seq));
2205 
2206                     /* add 4 TCP pseudoheader fields */
2207                     /* copy IP source and destination fields */
2208                     memcpy(data_to_checksum, saved_ip_header + 12, 8);
2209 
2210                     DPRINTF("+++ C+ mode TSO calculating TCP checksum for "
2211                         "packet with %d bytes data\n", tcp_hlen +
2212                         chunk_size);
2213 
2214                     if (tcp_send_offset)
2215                     {
2216                         memcpy((uint8_t*)p_tcp_hdr + tcp_hlen, (uint8_t*)p_tcp_hdr + tcp_hlen + tcp_send_offset, chunk_size);
2217                     }
2218 
2219                     /* keep PUSH and FIN flags only for the last frame */
2220                     if (!is_last_frame)
2221                     {
2222                         TCP_HEADER_CLEAR_FLAGS(p_tcp_hdr, TH_PUSH | TH_FIN);
2223                     }
2224 
2225                     /* recalculate TCP checksum */
2226                     ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum;
2227                     p_tcpip_hdr->zeros      = 0;
2228                     p_tcpip_hdr->ip_proto   = IP_PROTO_TCP;
2229                     p_tcpip_hdr->ip_payload = cpu_to_be16(tcp_hlen + chunk_size);
2230 
2231                     p_tcp_hdr->th_sum = 0;
2232 
2233                     int tcp_checksum = ip_checksum(data_to_checksum, tcp_hlen + chunk_size + 12);
2234                     DPRINTF("+++ C+ mode TSO TCP checksum %04x\n",
2235                         tcp_checksum);
2236 
2237                     p_tcp_hdr->th_sum = tcp_checksum;
2238 
2239                     /* restore IP header */
2240                     memcpy(eth_payload_data, saved_ip_header, hlen);
2241 
2242                     /* set IP data length and recalculate IP checksum */
2243                     ip->ip_len = cpu_to_be16(hlen + tcp_hlen + chunk_size);
2244 
2245                     /* increment IP id for subsequent frames */
2246                     ip->ip_id = cpu_to_be16(tcp_send_offset/tcp_chunk_size + be16_to_cpu(ip->ip_id));
2247 
2248                     ip->ip_sum = 0;
2249                     ip->ip_sum = ip_checksum(eth_payload_data, hlen);
2250                     DPRINTF("+++ C+ mode TSO IP header len=%d "
2251                         "checksum=%04x\n", hlen, ip->ip_sum);
2252 
2253                     int tso_send_size = ETH_HLEN + hlen + tcp_hlen + chunk_size;
2254                     DPRINTF("+++ C+ mode TSO transferring packet size "
2255                         "%d\n", tso_send_size);
2256                     rtl8139_transfer_frame(s, saved_buffer, tso_send_size,
2257                         0, (uint8_t *) dot1q_buffer);
2258 
2259                     /* add transferred count to TCP sequence number */
2260                     stl_be_p(&p_tcp_hdr->th_seq,
2261                              chunk_size + ldl_be_p(&p_tcp_hdr->th_seq));
2262                     ++send_count;
2263                 }
2264 
2265                 /* Stop sending this frame */
2266                 saved_size = 0;
2267             }
2268             else if (txdw0 & (CP_TX_TCPCS|CP_TX_UDPCS))
2269             {
2270                 DPRINTF("+++ C+ mode need TCP or UDP checksum\n");
2271 
2272                 /* maximum IP header length is 60 bytes */
2273                 uint8_t saved_ip_header[60];
2274                 memcpy(saved_ip_header, eth_payload_data, hlen);
2275 
2276                 uint8_t *data_to_checksum     = eth_payload_data + hlen - 12;
2277                 //                    size_t   data_to_checksum_len = eth_payload_len  - hlen + 12;
2278 
2279                 /* add 4 TCP pseudoheader fields */
2280                 /* copy IP source and destination fields */
2281                 memcpy(data_to_checksum, saved_ip_header + 12, 8);
2282 
2283                 if ((txdw0 & CP_TX_TCPCS) && ip_protocol == IP_PROTO_TCP)
2284                 {
2285                     DPRINTF("+++ C+ mode calculating TCP checksum for "
2286                         "packet with %d bytes data\n", ip_data_len);
2287 
2288                     ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum;
2289                     p_tcpip_hdr->zeros      = 0;
2290                     p_tcpip_hdr->ip_proto   = IP_PROTO_TCP;
2291                     p_tcpip_hdr->ip_payload = cpu_to_be16(ip_data_len);
2292 
2293                     tcp_header* p_tcp_hdr = (tcp_header *) (data_to_checksum+12);
2294 
2295                     p_tcp_hdr->th_sum = 0;
2296 
2297                     int tcp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12);
2298                     DPRINTF("+++ C+ mode TCP checksum %04x\n",
2299                         tcp_checksum);
2300 
2301                     p_tcp_hdr->th_sum = tcp_checksum;
2302                 }
2303                 else if ((txdw0 & CP_TX_UDPCS) && ip_protocol == IP_PROTO_UDP)
2304                 {
2305                     DPRINTF("+++ C+ mode calculating UDP checksum for "
2306                         "packet with %d bytes data\n", ip_data_len);
2307 
2308                     ip_pseudo_header *p_udpip_hdr = (ip_pseudo_header *)data_to_checksum;
2309                     p_udpip_hdr->zeros      = 0;
2310                     p_udpip_hdr->ip_proto   = IP_PROTO_UDP;
2311                     p_udpip_hdr->ip_payload = cpu_to_be16(ip_data_len);
2312 
2313                     udp_header *p_udp_hdr = (udp_header *) (data_to_checksum+12);
2314 
2315                     p_udp_hdr->uh_sum = 0;
2316 
2317                     int udp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12);
2318                     DPRINTF("+++ C+ mode UDP checksum %04x\n",
2319                         udp_checksum);
2320 
2321                     p_udp_hdr->uh_sum = udp_checksum;
2322                 }
2323 
2324                 /* restore IP header */
2325                 memcpy(eth_payload_data, saved_ip_header, hlen);
2326             }
2327         }
2328 
2329 skip_offload:
2330         /* update tally counter */
2331         ++s->tally_counters.TxOk;
2332 
2333         DPRINTF("+++ C+ mode transmitting %d bytes packet\n", saved_size);
2334 
2335         rtl8139_transfer_frame(s, saved_buffer, saved_size, 1,
2336             (uint8_t *) dot1q_buffer);
2337 
2338         /* restore card space if there was no recursion and reset offset */
2339         if (!s->cplus_txbuffer)
2340         {
2341             s->cplus_txbuffer        = saved_buffer;
2342             s->cplus_txbuffer_len    = saved_buffer_len;
2343             s->cplus_txbuffer_offset = 0;
2344         }
2345         else
2346         {
2347             g_free(saved_buffer);
2348         }
2349     }
2350     else
2351     {
2352         DPRINTF("+++ C+ mode transmission continue to next descriptor\n");
2353     }
2354 
2355     return 1;
2356 }
2357 
2358 static void rtl8139_cplus_transmit(RTL8139State *s)
2359 {
2360     int txcount = 0;
2361 
2362     while (txcount < 64 && rtl8139_cplus_transmit_one(s))
2363     {
2364         ++txcount;
2365     }
2366 
2367     /* Mark transfer completed */
2368     if (!txcount)
2369     {
2370         DPRINTF("C+ mode : transmitter queue stalled, current TxDesc = %d\n",
2371             s->currCPlusTxDesc);
2372     }
2373     else
2374     {
2375         /* update interrupt status */
2376         s->IntrStatus |= TxOK;
2377         rtl8139_update_irq(s);
2378     }
2379 }
2380 
2381 static void rtl8139_transmit(RTL8139State *s)
2382 {
2383     int descriptor = s->currTxDesc, txcount = 0;
2384 
2385     /*while*/
2386     if (rtl8139_transmit_one(s, descriptor))
2387     {
2388         ++s->currTxDesc;
2389         s->currTxDesc %= 4;
2390         ++txcount;
2391     }
2392 
2393     /* Mark transfer completed */
2394     if (!txcount)
2395     {
2396         DPRINTF("transmitter queue stalled, current TxDesc = %d\n",
2397             s->currTxDesc);
2398     }
2399 }
2400 
2401 static void rtl8139_TxStatus_write(RTL8139State *s, uint32_t txRegOffset, uint32_t val)
2402 {
2403 
2404     int descriptor = txRegOffset/4;
2405 
2406     /* handle C+ transmit mode register configuration */
2407 
2408     if (s->cplus_enabled)
2409     {
2410         DPRINTF("RTL8139C+ DTCCR write offset=0x%x val=0x%08x "
2411             "descriptor=%d\n", txRegOffset, val, descriptor);
2412 
2413         /* handle Dump Tally Counters command */
2414         s->TxStatus[descriptor] = val;
2415 
2416         if (descriptor == 0 && (val & 0x8))
2417         {
2418             hwaddr tc_addr = rtl8139_addr64(s->TxStatus[0] & ~0x3f, s->TxStatus[1]);
2419 
2420             /* dump tally counters to specified memory location */
2421             RTL8139TallyCounters_dma_write(s, tc_addr);
2422 
2423             /* mark dump completed */
2424             s->TxStatus[0] &= ~0x8;
2425         }
2426 
2427         return;
2428     }
2429 
2430     DPRINTF("TxStatus write offset=0x%x val=0x%08x descriptor=%d\n",
2431         txRegOffset, val, descriptor);
2432 
2433     /* mask only reserved bits */
2434     val &= ~0xff00c000; /* these bits are reset on write */
2435     val = SET_MASKED(val, 0x00c00000, s->TxStatus[descriptor]);
2436 
2437     s->TxStatus[descriptor] = val;
2438 
2439     /* attempt to start transmission */
2440     rtl8139_transmit(s);
2441 }
2442 
2443 static uint32_t rtl8139_TxStatus_TxAddr_read(RTL8139State *s, uint32_t regs[],
2444                                              uint32_t base, uint8_t addr,
2445                                              int size)
2446 {
2447     uint32_t reg = (addr - base) / 4;
2448     uint32_t offset = addr & 0x3;
2449     uint32_t ret = 0;
2450 
2451     if (addr & (size - 1)) {
2452         DPRINTF("not implemented read for TxStatus/TxAddr "
2453                 "addr=0x%x size=0x%x\n", addr, size);
2454         return ret;
2455     }
2456 
2457     switch (size) {
2458     case 1: /* fall through */
2459     case 2: /* fall through */
2460     case 4:
2461         ret = (regs[reg] >> offset * 8) & (((uint64_t)1 << (size * 8)) - 1);
2462         DPRINTF("TxStatus/TxAddr[%d] read addr=0x%x size=0x%x val=0x%08x\n",
2463                 reg, addr, size, ret);
2464         break;
2465     default:
2466         DPRINTF("unsupported size 0x%x of TxStatus/TxAddr reading\n", size);
2467         break;
2468     }
2469 
2470     return ret;
2471 }
2472 
2473 static uint16_t rtl8139_TSAD_read(RTL8139State *s)
2474 {
2475     uint16_t ret = 0;
2476 
2477     /* Simulate TSAD, it is read only anyway */
2478 
2479     ret = ((s->TxStatus[3] & TxStatOK  )?TSAD_TOK3:0)
2480          |((s->TxStatus[2] & TxStatOK  )?TSAD_TOK2:0)
2481          |((s->TxStatus[1] & TxStatOK  )?TSAD_TOK1:0)
2482          |((s->TxStatus[0] & TxStatOK  )?TSAD_TOK0:0)
2483 
2484          |((s->TxStatus[3] & TxUnderrun)?TSAD_TUN3:0)
2485          |((s->TxStatus[2] & TxUnderrun)?TSAD_TUN2:0)
2486          |((s->TxStatus[1] & TxUnderrun)?TSAD_TUN1:0)
2487          |((s->TxStatus[0] & TxUnderrun)?TSAD_TUN0:0)
2488 
2489          |((s->TxStatus[3] & TxAborted )?TSAD_TABT3:0)
2490          |((s->TxStatus[2] & TxAborted )?TSAD_TABT2:0)
2491          |((s->TxStatus[1] & TxAborted )?TSAD_TABT1:0)
2492          |((s->TxStatus[0] & TxAborted )?TSAD_TABT0:0)
2493 
2494          |((s->TxStatus[3] & TxHostOwns )?TSAD_OWN3:0)
2495          |((s->TxStatus[2] & TxHostOwns )?TSAD_OWN2:0)
2496          |((s->TxStatus[1] & TxHostOwns )?TSAD_OWN1:0)
2497          |((s->TxStatus[0] & TxHostOwns )?TSAD_OWN0:0) ;
2498 
2499 
2500     DPRINTF("TSAD read val=0x%04x\n", ret);
2501 
2502     return ret;
2503 }
2504 
2505 static uint16_t rtl8139_CSCR_read(RTL8139State *s)
2506 {
2507     uint16_t ret = s->CSCR;
2508 
2509     DPRINTF("CSCR read val=0x%04x\n", ret);
2510 
2511     return ret;
2512 }
2513 
2514 static void rtl8139_TxAddr_write(RTL8139State *s, uint32_t txAddrOffset, uint32_t val)
2515 {
2516     DPRINTF("TxAddr write offset=0x%x val=0x%08x\n", txAddrOffset, val);
2517 
2518     s->TxAddr[txAddrOffset/4] = val;
2519 }
2520 
2521 static uint32_t rtl8139_TxAddr_read(RTL8139State *s, uint32_t txAddrOffset)
2522 {
2523     uint32_t ret = s->TxAddr[txAddrOffset/4];
2524 
2525     DPRINTF("TxAddr read offset=0x%x val=0x%08x\n", txAddrOffset, ret);
2526 
2527     return ret;
2528 }
2529 
2530 static void rtl8139_RxBufPtr_write(RTL8139State *s, uint32_t val)
2531 {
2532     DPRINTF("RxBufPtr write val=0x%04x\n", val);
2533 
2534     /* this value is off by 16 */
2535     s->RxBufPtr = MOD2(val + 0x10, s->RxBufferSize);
2536 
2537     /* more buffer space may be available so try to receive */
2538     qemu_flush_queued_packets(qemu_get_queue(s->nic));
2539 
2540     DPRINTF(" CAPR write: rx buffer length %d head 0x%04x read 0x%04x\n",
2541         s->RxBufferSize, s->RxBufAddr, s->RxBufPtr);
2542 }
2543 
2544 static uint32_t rtl8139_RxBufPtr_read(RTL8139State *s)
2545 {
2546     /* this value is off by 16 */
2547     uint32_t ret = s->RxBufPtr - 0x10;
2548 
2549     DPRINTF("RxBufPtr read val=0x%04x\n", ret);
2550 
2551     return ret;
2552 }
2553 
2554 static uint32_t rtl8139_RxBufAddr_read(RTL8139State *s)
2555 {
2556     /* this value is NOT off by 16 */
2557     uint32_t ret = s->RxBufAddr;
2558 
2559     DPRINTF("RxBufAddr read val=0x%04x\n", ret);
2560 
2561     return ret;
2562 }
2563 
2564 static void rtl8139_RxBuf_write(RTL8139State *s, uint32_t val)
2565 {
2566     DPRINTF("RxBuf write val=0x%08x\n", val);
2567 
2568     s->RxBuf = val;
2569 
2570     /* may need to reset rxring here */
2571 }
2572 
2573 static uint32_t rtl8139_RxBuf_read(RTL8139State *s)
2574 {
2575     uint32_t ret = s->RxBuf;
2576 
2577     DPRINTF("RxBuf read val=0x%08x\n", ret);
2578 
2579     return ret;
2580 }
2581 
2582 static void rtl8139_IntrMask_write(RTL8139State *s, uint32_t val)
2583 {
2584     DPRINTF("IntrMask write(w) val=0x%04x\n", val);
2585 
2586     /* mask unwritable bits */
2587     val = SET_MASKED(val, 0x1e00, s->IntrMask);
2588 
2589     s->IntrMask = val;
2590 
2591     rtl8139_update_irq(s);
2592 
2593 }
2594 
2595 static uint32_t rtl8139_IntrMask_read(RTL8139State *s)
2596 {
2597     uint32_t ret = s->IntrMask;
2598 
2599     DPRINTF("IntrMask read(w) val=0x%04x\n", ret);
2600 
2601     return ret;
2602 }
2603 
2604 static void rtl8139_IntrStatus_write(RTL8139State *s, uint32_t val)
2605 {
2606     DPRINTF("IntrStatus write(w) val=0x%04x\n", val);
2607 
2608 #if 0
2609 
2610     /* writing to ISR has no effect */
2611 
2612     return;
2613 
2614 #else
2615     uint16_t newStatus = s->IntrStatus & ~val;
2616 
2617     /* mask unwritable bits */
2618     newStatus = SET_MASKED(newStatus, 0x1e00, s->IntrStatus);
2619 
2620     /* writing 1 to interrupt status register bit clears it */
2621     s->IntrStatus = 0;
2622     rtl8139_update_irq(s);
2623 
2624     s->IntrStatus = newStatus;
2625     rtl8139_set_next_tctr_time(s);
2626     rtl8139_update_irq(s);
2627 
2628 #endif
2629 }
2630 
2631 static uint32_t rtl8139_IntrStatus_read(RTL8139State *s)
2632 {
2633     uint32_t ret = s->IntrStatus;
2634 
2635     DPRINTF("IntrStatus read(w) val=0x%04x\n", ret);
2636 
2637 #if 0
2638 
2639     /* reading ISR clears all interrupts */
2640     s->IntrStatus = 0;
2641 
2642     rtl8139_update_irq(s);
2643 
2644 #endif
2645 
2646     return ret;
2647 }
2648 
2649 static void rtl8139_MultiIntr_write(RTL8139State *s, uint32_t val)
2650 {
2651     DPRINTF("MultiIntr write(w) val=0x%04x\n", val);
2652 
2653     /* mask unwritable bits */
2654     val = SET_MASKED(val, 0xf000, s->MultiIntr);
2655 
2656     s->MultiIntr = val;
2657 }
2658 
2659 static uint32_t rtl8139_MultiIntr_read(RTL8139State *s)
2660 {
2661     uint32_t ret = s->MultiIntr;
2662 
2663     DPRINTF("MultiIntr read(w) val=0x%04x\n", ret);
2664 
2665     return ret;
2666 }
2667 
2668 static void rtl8139_io_writeb(void *opaque, uint8_t addr, uint32_t val)
2669 {
2670     RTL8139State *s = opaque;
2671 
2672     switch (addr)
2673     {
2674         case MAC0 ... MAC0+4:
2675             s->phys[addr - MAC0] = val;
2676             break;
2677         case MAC0+5:
2678             s->phys[addr - MAC0] = val;
2679             qemu_format_nic_info_str(qemu_get_queue(s->nic), s->phys);
2680             break;
2681         case MAC0+6 ... MAC0+7:
2682             /* reserved */
2683             break;
2684         case MAR0 ... MAR0+7:
2685             s->mult[addr - MAR0] = val;
2686             break;
2687         case ChipCmd:
2688             rtl8139_ChipCmd_write(s, val);
2689             break;
2690         case Cfg9346:
2691             rtl8139_Cfg9346_write(s, val);
2692             break;
2693         case TxConfig: /* windows driver sometimes writes using byte-lenth call */
2694             rtl8139_TxConfig_writeb(s, val);
2695             break;
2696         case Config0:
2697             rtl8139_Config0_write(s, val);
2698             break;
2699         case Config1:
2700             rtl8139_Config1_write(s, val);
2701             break;
2702         case Config3:
2703             rtl8139_Config3_write(s, val);
2704             break;
2705         case Config4:
2706             rtl8139_Config4_write(s, val);
2707             break;
2708         case Config5:
2709             rtl8139_Config5_write(s, val);
2710             break;
2711         case MediaStatus:
2712             /* ignore */
2713             DPRINTF("not implemented write(b) to MediaStatus val=0x%02x\n",
2714                 val);
2715             break;
2716 
2717         case HltClk:
2718             DPRINTF("HltClk write val=0x%08x\n", val);
2719             if (val == 'R')
2720             {
2721                 s->clock_enabled = 1;
2722             }
2723             else if (val == 'H')
2724             {
2725                 s->clock_enabled = 0;
2726             }
2727             break;
2728 
2729         case TxThresh:
2730             DPRINTF("C+ TxThresh write(b) val=0x%02x\n", val);
2731             s->TxThresh = val;
2732             break;
2733 
2734         case TxPoll:
2735             DPRINTF("C+ TxPoll write(b) val=0x%02x\n", val);
2736             if (val & (1 << 7))
2737             {
2738                 DPRINTF("C+ TxPoll high priority transmission (not "
2739                     "implemented)\n");
2740                 //rtl8139_cplus_transmit(s);
2741             }
2742             if (val & (1 << 6))
2743             {
2744                 DPRINTF("C+ TxPoll normal priority transmission\n");
2745                 rtl8139_cplus_transmit(s);
2746             }
2747 
2748             break;
2749 
2750         default:
2751             DPRINTF("not implemented write(b) addr=0x%x val=0x%02x\n", addr,
2752                 val);
2753             break;
2754     }
2755 }
2756 
2757 static void rtl8139_io_writew(void *opaque, uint8_t addr, uint32_t val)
2758 {
2759     RTL8139State *s = opaque;
2760 
2761     switch (addr)
2762     {
2763         case IntrMask:
2764             rtl8139_IntrMask_write(s, val);
2765             break;
2766 
2767         case IntrStatus:
2768             rtl8139_IntrStatus_write(s, val);
2769             break;
2770 
2771         case MultiIntr:
2772             rtl8139_MultiIntr_write(s, val);
2773             break;
2774 
2775         case RxBufPtr:
2776             rtl8139_RxBufPtr_write(s, val);
2777             break;
2778 
2779         case BasicModeCtrl:
2780             rtl8139_BasicModeCtrl_write(s, val);
2781             break;
2782         case BasicModeStatus:
2783             rtl8139_BasicModeStatus_write(s, val);
2784             break;
2785         case NWayAdvert:
2786             DPRINTF("NWayAdvert write(w) val=0x%04x\n", val);
2787             s->NWayAdvert = val;
2788             break;
2789         case NWayLPAR:
2790             DPRINTF("forbidden NWayLPAR write(w) val=0x%04x\n", val);
2791             break;
2792         case NWayExpansion:
2793             DPRINTF("NWayExpansion write(w) val=0x%04x\n", val);
2794             s->NWayExpansion = val;
2795             break;
2796 
2797         case CpCmd:
2798             rtl8139_CpCmd_write(s, val);
2799             break;
2800 
2801         case IntrMitigate:
2802             rtl8139_IntrMitigate_write(s, val);
2803             break;
2804 
2805         default:
2806             DPRINTF("ioport write(w) addr=0x%x val=0x%04x via write(b)\n",
2807                 addr, val);
2808 
2809             rtl8139_io_writeb(opaque, addr, val & 0xff);
2810             rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff);
2811             break;
2812     }
2813 }
2814 
2815 static void rtl8139_set_next_tctr_time(RTL8139State *s)
2816 {
2817     const uint64_t ns_per_period = (uint64_t)PCI_PERIOD << 32;
2818 
2819     DPRINTF("entered rtl8139_set_next_tctr_time\n");
2820 
2821     /* This function is called at least once per period, so it is a good
2822      * place to update the timer base.
2823      *
2824      * After one iteration of this loop the value in the Timer register does
2825      * not change, but the device model is counting up by 2^32 ticks (approx.
2826      * 130 seconds).
2827      */
2828     while (s->TCTR_base + ns_per_period <= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)) {
2829         s->TCTR_base += ns_per_period;
2830     }
2831 
2832     if (!s->TimerInt) {
2833         timer_del(s->timer);
2834     } else {
2835         uint64_t delta = (uint64_t)s->TimerInt * PCI_PERIOD;
2836         if (s->TCTR_base + delta <= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)) {
2837             delta += ns_per_period;
2838         }
2839         timer_mod(s->timer, s->TCTR_base + delta);
2840     }
2841 }
2842 
2843 static void rtl8139_io_writel(void *opaque, uint8_t addr, uint32_t val)
2844 {
2845     RTL8139State *s = opaque;
2846 
2847     switch (addr)
2848     {
2849         case RxMissed:
2850             DPRINTF("RxMissed clearing on write\n");
2851             s->RxMissed = 0;
2852             break;
2853 
2854         case TxConfig:
2855             rtl8139_TxConfig_write(s, val);
2856             break;
2857 
2858         case RxConfig:
2859             rtl8139_RxConfig_write(s, val);
2860             break;
2861 
2862         case TxStatus0 ... TxStatus0+4*4-1:
2863             rtl8139_TxStatus_write(s, addr-TxStatus0, val);
2864             break;
2865 
2866         case TxAddr0 ... TxAddr0+4*4-1:
2867             rtl8139_TxAddr_write(s, addr-TxAddr0, val);
2868             break;
2869 
2870         case RxBuf:
2871             rtl8139_RxBuf_write(s, val);
2872             break;
2873 
2874         case RxRingAddrLO:
2875             DPRINTF("C+ RxRing low bits write val=0x%08x\n", val);
2876             s->RxRingAddrLO = val;
2877             break;
2878 
2879         case RxRingAddrHI:
2880             DPRINTF("C+ RxRing high bits write val=0x%08x\n", val);
2881             s->RxRingAddrHI = val;
2882             break;
2883 
2884         case Timer:
2885             DPRINTF("TCTR Timer reset on write\n");
2886             s->TCTR_base = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
2887             rtl8139_set_next_tctr_time(s);
2888             break;
2889 
2890         case FlashReg:
2891             DPRINTF("FlashReg TimerInt write val=0x%08x\n", val);
2892             if (s->TimerInt != val) {
2893                 s->TimerInt = val;
2894                 rtl8139_set_next_tctr_time(s);
2895             }
2896             break;
2897 
2898         default:
2899             DPRINTF("ioport write(l) addr=0x%x val=0x%08x via write(b)\n",
2900                 addr, val);
2901             rtl8139_io_writeb(opaque, addr, val & 0xff);
2902             rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff);
2903             rtl8139_io_writeb(opaque, addr + 2, (val >> 16) & 0xff);
2904             rtl8139_io_writeb(opaque, addr + 3, (val >> 24) & 0xff);
2905             break;
2906     }
2907 }
2908 
2909 static uint32_t rtl8139_io_readb(void *opaque, uint8_t addr)
2910 {
2911     RTL8139State *s = opaque;
2912     int ret;
2913 
2914     switch (addr)
2915     {
2916         case MAC0 ... MAC0+5:
2917             ret = s->phys[addr - MAC0];
2918             break;
2919         case MAC0+6 ... MAC0+7:
2920             ret = 0;
2921             break;
2922         case MAR0 ... MAR0+7:
2923             ret = s->mult[addr - MAR0];
2924             break;
2925         case TxStatus0 ... TxStatus0+4*4-1:
2926             ret = rtl8139_TxStatus_TxAddr_read(s, s->TxStatus, TxStatus0,
2927                                                addr, 1);
2928             break;
2929         case ChipCmd:
2930             ret = rtl8139_ChipCmd_read(s);
2931             break;
2932         case Cfg9346:
2933             ret = rtl8139_Cfg9346_read(s);
2934             break;
2935         case Config0:
2936             ret = rtl8139_Config0_read(s);
2937             break;
2938         case Config1:
2939             ret = rtl8139_Config1_read(s);
2940             break;
2941         case Config3:
2942             ret = rtl8139_Config3_read(s);
2943             break;
2944         case Config4:
2945             ret = rtl8139_Config4_read(s);
2946             break;
2947         case Config5:
2948             ret = rtl8139_Config5_read(s);
2949             break;
2950 
2951         case MediaStatus:
2952             /* The LinkDown bit of MediaStatus is inverse with link status */
2953             ret = 0xd0 | (~s->BasicModeStatus & 0x04);
2954             DPRINTF("MediaStatus read 0x%x\n", ret);
2955             break;
2956 
2957         case HltClk:
2958             ret = s->clock_enabled;
2959             DPRINTF("HltClk read 0x%x\n", ret);
2960             break;
2961 
2962         case PCIRevisionID:
2963             ret = RTL8139_PCI_REVID;
2964             DPRINTF("PCI Revision ID read 0x%x\n", ret);
2965             break;
2966 
2967         case TxThresh:
2968             ret = s->TxThresh;
2969             DPRINTF("C+ TxThresh read(b) val=0x%02x\n", ret);
2970             break;
2971 
2972         case 0x43: /* Part of TxConfig register. Windows driver tries to read it */
2973             ret = s->TxConfig >> 24;
2974             DPRINTF("RTL8139C TxConfig at 0x43 read(b) val=0x%02x\n", ret);
2975             break;
2976 
2977         default:
2978             DPRINTF("not implemented read(b) addr=0x%x\n", addr);
2979             ret = 0;
2980             break;
2981     }
2982 
2983     return ret;
2984 }
2985 
2986 static uint32_t rtl8139_io_readw(void *opaque, uint8_t addr)
2987 {
2988     RTL8139State *s = opaque;
2989     uint32_t ret;
2990 
2991     switch (addr)
2992     {
2993         case TxAddr0 ... TxAddr0+4*4-1:
2994             ret = rtl8139_TxStatus_TxAddr_read(s, s->TxAddr, TxAddr0, addr, 2);
2995             break;
2996         case IntrMask:
2997             ret = rtl8139_IntrMask_read(s);
2998             break;
2999 
3000         case IntrStatus:
3001             ret = rtl8139_IntrStatus_read(s);
3002             break;
3003 
3004         case MultiIntr:
3005             ret = rtl8139_MultiIntr_read(s);
3006             break;
3007 
3008         case RxBufPtr:
3009             ret = rtl8139_RxBufPtr_read(s);
3010             break;
3011 
3012         case RxBufAddr:
3013             ret = rtl8139_RxBufAddr_read(s);
3014             break;
3015 
3016         case BasicModeCtrl:
3017             ret = rtl8139_BasicModeCtrl_read(s);
3018             break;
3019         case BasicModeStatus:
3020             ret = rtl8139_BasicModeStatus_read(s);
3021             break;
3022         case NWayAdvert:
3023             ret = s->NWayAdvert;
3024             DPRINTF("NWayAdvert read(w) val=0x%04x\n", ret);
3025             break;
3026         case NWayLPAR:
3027             ret = s->NWayLPAR;
3028             DPRINTF("NWayLPAR read(w) val=0x%04x\n", ret);
3029             break;
3030         case NWayExpansion:
3031             ret = s->NWayExpansion;
3032             DPRINTF("NWayExpansion read(w) val=0x%04x\n", ret);
3033             break;
3034 
3035         case CpCmd:
3036             ret = rtl8139_CpCmd_read(s);
3037             break;
3038 
3039         case IntrMitigate:
3040             ret = rtl8139_IntrMitigate_read(s);
3041             break;
3042 
3043         case TxSummary:
3044             ret = rtl8139_TSAD_read(s);
3045             break;
3046 
3047         case CSCR:
3048             ret = rtl8139_CSCR_read(s);
3049             break;
3050 
3051         default:
3052             DPRINTF("ioport read(w) addr=0x%x via read(b)\n", addr);
3053 
3054             ret  = rtl8139_io_readb(opaque, addr);
3055             ret |= rtl8139_io_readb(opaque, addr + 1) << 8;
3056 
3057             DPRINTF("ioport read(w) addr=0x%x val=0x%04x\n", addr, ret);
3058             break;
3059     }
3060 
3061     return ret;
3062 }
3063 
3064 static uint32_t rtl8139_io_readl(void *opaque, uint8_t addr)
3065 {
3066     RTL8139State *s = opaque;
3067     uint32_t ret;
3068 
3069     switch (addr)
3070     {
3071         case RxMissed:
3072             ret = s->RxMissed;
3073 
3074             DPRINTF("RxMissed read val=0x%08x\n", ret);
3075             break;
3076 
3077         case TxConfig:
3078             ret = rtl8139_TxConfig_read(s);
3079             break;
3080 
3081         case RxConfig:
3082             ret = rtl8139_RxConfig_read(s);
3083             break;
3084 
3085         case TxStatus0 ... TxStatus0+4*4-1:
3086             ret = rtl8139_TxStatus_TxAddr_read(s, s->TxStatus, TxStatus0,
3087                                                addr, 4);
3088             break;
3089 
3090         case TxAddr0 ... TxAddr0+4*4-1:
3091             ret = rtl8139_TxAddr_read(s, addr-TxAddr0);
3092             break;
3093 
3094         case RxBuf:
3095             ret = rtl8139_RxBuf_read(s);
3096             break;
3097 
3098         case RxRingAddrLO:
3099             ret = s->RxRingAddrLO;
3100             DPRINTF("C+ RxRing low bits read val=0x%08x\n", ret);
3101             break;
3102 
3103         case RxRingAddrHI:
3104             ret = s->RxRingAddrHI;
3105             DPRINTF("C+ RxRing high bits read val=0x%08x\n", ret);
3106             break;
3107 
3108         case Timer:
3109             ret = (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - s->TCTR_base) /
3110                   PCI_PERIOD;
3111             DPRINTF("TCTR Timer read val=0x%08x\n", ret);
3112             break;
3113 
3114         case FlashReg:
3115             ret = s->TimerInt;
3116             DPRINTF("FlashReg TimerInt read val=0x%08x\n", ret);
3117             break;
3118 
3119         default:
3120             DPRINTF("ioport read(l) addr=0x%x via read(b)\n", addr);
3121 
3122             ret  = rtl8139_io_readb(opaque, addr);
3123             ret |= rtl8139_io_readb(opaque, addr + 1) << 8;
3124             ret |= rtl8139_io_readb(opaque, addr + 2) << 16;
3125             ret |= rtl8139_io_readb(opaque, addr + 3) << 24;
3126 
3127             DPRINTF("read(l) addr=0x%x val=%08x\n", addr, ret);
3128             break;
3129     }
3130 
3131     return ret;
3132 }
3133 
3134 /* */
3135 
3136 static int rtl8139_post_load(void *opaque, int version_id)
3137 {
3138     RTL8139State* s = opaque;
3139     rtl8139_set_next_tctr_time(s);
3140     if (version_id < 4) {
3141         s->cplus_enabled = s->CpCmd != 0;
3142     }
3143 
3144     /* nc.link_down can't be migrated, so infer link_down according
3145      * to link status bit in BasicModeStatus */
3146     qemu_get_queue(s->nic)->link_down = (s->BasicModeStatus & 0x04) == 0;
3147 
3148     return 0;
3149 }
3150 
3151 static bool rtl8139_hotplug_ready_needed(void *opaque)
3152 {
3153     return qdev_machine_modified();
3154 }
3155 
3156 static const VMStateDescription vmstate_rtl8139_hotplug_ready ={
3157     .name = "rtl8139/hotplug_ready",
3158     .version_id = 1,
3159     .minimum_version_id = 1,
3160     .needed = rtl8139_hotplug_ready_needed,
3161     .fields = (VMStateField[]) {
3162         VMSTATE_END_OF_LIST()
3163     }
3164 };
3165 
3166 static int rtl8139_pre_save(void *opaque)
3167 {
3168     RTL8139State* s = opaque;
3169     int64_t current_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
3170 
3171     /* for migration to older versions */
3172     s->TCTR = (current_time - s->TCTR_base) / PCI_PERIOD;
3173     s->rtl8139_mmio_io_addr_dummy = 0;
3174 
3175     return 0;
3176 }
3177 
3178 static const VMStateDescription vmstate_rtl8139 = {
3179     .name = "rtl8139",
3180     .version_id = 5,
3181     .minimum_version_id = 3,
3182     .post_load = rtl8139_post_load,
3183     .pre_save  = rtl8139_pre_save,
3184     .fields = (VMStateField[]) {
3185         VMSTATE_PCI_DEVICE(parent_obj, RTL8139State),
3186         VMSTATE_PARTIAL_BUFFER(phys, RTL8139State, 6),
3187         VMSTATE_BUFFER(mult, RTL8139State),
3188         VMSTATE_UINT32_ARRAY(TxStatus, RTL8139State, 4),
3189         VMSTATE_UINT32_ARRAY(TxAddr, RTL8139State, 4),
3190 
3191         VMSTATE_UINT32(RxBuf, RTL8139State),
3192         VMSTATE_UINT32(RxBufferSize, RTL8139State),
3193         VMSTATE_UINT32(RxBufPtr, RTL8139State),
3194         VMSTATE_UINT32(RxBufAddr, RTL8139State),
3195 
3196         VMSTATE_UINT16(IntrStatus, RTL8139State),
3197         VMSTATE_UINT16(IntrMask, RTL8139State),
3198 
3199         VMSTATE_UINT32(TxConfig, RTL8139State),
3200         VMSTATE_UINT32(RxConfig, RTL8139State),
3201         VMSTATE_UINT32(RxMissed, RTL8139State),
3202         VMSTATE_UINT16(CSCR, RTL8139State),
3203 
3204         VMSTATE_UINT8(Cfg9346, RTL8139State),
3205         VMSTATE_UINT8(Config0, RTL8139State),
3206         VMSTATE_UINT8(Config1, RTL8139State),
3207         VMSTATE_UINT8(Config3, RTL8139State),
3208         VMSTATE_UINT8(Config4, RTL8139State),
3209         VMSTATE_UINT8(Config5, RTL8139State),
3210 
3211         VMSTATE_UINT8(clock_enabled, RTL8139State),
3212         VMSTATE_UINT8(bChipCmdState, RTL8139State),
3213 
3214         VMSTATE_UINT16(MultiIntr, RTL8139State),
3215 
3216         VMSTATE_UINT16(BasicModeCtrl, RTL8139State),
3217         VMSTATE_UINT16(BasicModeStatus, RTL8139State),
3218         VMSTATE_UINT16(NWayAdvert, RTL8139State),
3219         VMSTATE_UINT16(NWayLPAR, RTL8139State),
3220         VMSTATE_UINT16(NWayExpansion, RTL8139State),
3221 
3222         VMSTATE_UINT16(CpCmd, RTL8139State),
3223         VMSTATE_UINT8(TxThresh, RTL8139State),
3224 
3225         VMSTATE_UNUSED(4),
3226         VMSTATE_MACADDR(conf.macaddr, RTL8139State),
3227         VMSTATE_INT32(rtl8139_mmio_io_addr_dummy, RTL8139State),
3228 
3229         VMSTATE_UINT32(currTxDesc, RTL8139State),
3230         VMSTATE_UINT32(currCPlusRxDesc, RTL8139State),
3231         VMSTATE_UINT32(currCPlusTxDesc, RTL8139State),
3232         VMSTATE_UINT32(RxRingAddrLO, RTL8139State),
3233         VMSTATE_UINT32(RxRingAddrHI, RTL8139State),
3234 
3235         VMSTATE_UINT16_ARRAY(eeprom.contents, RTL8139State, EEPROM_9346_SIZE),
3236         VMSTATE_INT32(eeprom.mode, RTL8139State),
3237         VMSTATE_UINT32(eeprom.tick, RTL8139State),
3238         VMSTATE_UINT8(eeprom.address, RTL8139State),
3239         VMSTATE_UINT16(eeprom.input, RTL8139State),
3240         VMSTATE_UINT16(eeprom.output, RTL8139State),
3241 
3242         VMSTATE_UINT8(eeprom.eecs, RTL8139State),
3243         VMSTATE_UINT8(eeprom.eesk, RTL8139State),
3244         VMSTATE_UINT8(eeprom.eedi, RTL8139State),
3245         VMSTATE_UINT8(eeprom.eedo, RTL8139State),
3246 
3247         VMSTATE_UINT32(TCTR, RTL8139State),
3248         VMSTATE_UINT32(TimerInt, RTL8139State),
3249         VMSTATE_INT64(TCTR_base, RTL8139State),
3250 
3251         VMSTATE_UINT64(tally_counters.TxOk, RTL8139State),
3252         VMSTATE_UINT64(tally_counters.RxOk, RTL8139State),
3253         VMSTATE_UINT64(tally_counters.TxERR, RTL8139State),
3254         VMSTATE_UINT32(tally_counters.RxERR, RTL8139State),
3255         VMSTATE_UINT16(tally_counters.MissPkt, RTL8139State),
3256         VMSTATE_UINT16(tally_counters.FAE, RTL8139State),
3257         VMSTATE_UINT32(tally_counters.Tx1Col, RTL8139State),
3258         VMSTATE_UINT32(tally_counters.TxMCol, RTL8139State),
3259         VMSTATE_UINT64(tally_counters.RxOkPhy, RTL8139State),
3260         VMSTATE_UINT64(tally_counters.RxOkBrd, RTL8139State),
3261         VMSTATE_UINT32_V(tally_counters.RxOkMul, RTL8139State, 5),
3262         VMSTATE_UINT16(tally_counters.TxAbt, RTL8139State),
3263         VMSTATE_UINT16(tally_counters.TxUndrn, RTL8139State),
3264 
3265         VMSTATE_UINT32_V(cplus_enabled, RTL8139State, 4),
3266         VMSTATE_END_OF_LIST()
3267     },
3268     .subsections = (const VMStateDescription*[]) {
3269         &vmstate_rtl8139_hotplug_ready,
3270         NULL
3271     }
3272 };
3273 
3274 /***********************************************************/
3275 /* PCI RTL8139 definitions */
3276 
3277 static void rtl8139_ioport_write(void *opaque, hwaddr addr,
3278                                  uint64_t val, unsigned size)
3279 {
3280     switch (size) {
3281     case 1:
3282         rtl8139_io_writeb(opaque, addr, val);
3283         break;
3284     case 2:
3285         rtl8139_io_writew(opaque, addr, val);
3286         break;
3287     case 4:
3288         rtl8139_io_writel(opaque, addr, val);
3289         break;
3290     }
3291 }
3292 
3293 static uint64_t rtl8139_ioport_read(void *opaque, hwaddr addr,
3294                                     unsigned size)
3295 {
3296     switch (size) {
3297     case 1:
3298         return rtl8139_io_readb(opaque, addr);
3299     case 2:
3300         return rtl8139_io_readw(opaque, addr);
3301     case 4:
3302         return rtl8139_io_readl(opaque, addr);
3303     }
3304 
3305     return -1;
3306 }
3307 
3308 static const MemoryRegionOps rtl8139_io_ops = {
3309     .read = rtl8139_ioport_read,
3310     .write = rtl8139_ioport_write,
3311     .impl = {
3312         .min_access_size = 1,
3313         .max_access_size = 4,
3314     },
3315     .endianness = DEVICE_LITTLE_ENDIAN,
3316 };
3317 
3318 static void rtl8139_timer(void *opaque)
3319 {
3320     RTL8139State *s = opaque;
3321 
3322     if (!s->clock_enabled)
3323     {
3324         DPRINTF(">>> timer: clock is not running\n");
3325         return;
3326     }
3327 
3328     s->IntrStatus |= PCSTimeout;
3329     rtl8139_update_irq(s);
3330     rtl8139_set_next_tctr_time(s);
3331 }
3332 
3333 static void pci_rtl8139_uninit(PCIDevice *dev)
3334 {
3335     RTL8139State *s = RTL8139(dev);
3336 
3337     g_free(s->cplus_txbuffer);
3338     s->cplus_txbuffer = NULL;
3339     timer_del(s->timer);
3340     timer_free(s->timer);
3341     qemu_del_nic(s->nic);
3342 }
3343 
3344 static void rtl8139_set_link_status(NetClientState *nc)
3345 {
3346     RTL8139State *s = qemu_get_nic_opaque(nc);
3347 
3348     if (nc->link_down) {
3349         s->BasicModeStatus &= ~0x04;
3350     } else {
3351         s->BasicModeStatus |= 0x04;
3352     }
3353 
3354     s->IntrStatus |= RxUnderrun;
3355     rtl8139_update_irq(s);
3356 }
3357 
3358 static NetClientInfo net_rtl8139_info = {
3359     .type = NET_CLIENT_DRIVER_NIC,
3360     .size = sizeof(NICState),
3361     .can_receive = rtl8139_can_receive,
3362     .receive = rtl8139_receive,
3363     .link_status_changed = rtl8139_set_link_status,
3364 };
3365 
3366 static void pci_rtl8139_realize(PCIDevice *dev, Error **errp)
3367 {
3368     RTL8139State *s = RTL8139(dev);
3369     DeviceState *d = DEVICE(dev);
3370     uint8_t *pci_conf;
3371 
3372     pci_conf = dev->config;
3373     pci_conf[PCI_INTERRUPT_PIN] = 1;    /* interrupt pin A */
3374     /* TODO: start of capability list, but no capability
3375      * list bit in status register, and offset 0xdc seems unused. */
3376     pci_conf[PCI_CAPABILITY_LIST] = 0xdc;
3377 
3378     memory_region_init_io(&s->bar_io, OBJECT(s), &rtl8139_io_ops, s,
3379                           "rtl8139", 0x100);
3380     memory_region_init_alias(&s->bar_mem, OBJECT(s), "rtl8139-mem", &s->bar_io,
3381                              0, 0x100);
3382 
3383     pci_register_bar(dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &s->bar_io);
3384     pci_register_bar(dev, 1, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->bar_mem);
3385 
3386     qemu_macaddr_default_if_unset(&s->conf.macaddr);
3387 
3388     /* prepare eeprom */
3389     s->eeprom.contents[0] = 0x8129;
3390 #if 1
3391     /* PCI vendor and device ID should be mirrored here */
3392     s->eeprom.contents[1] = PCI_VENDOR_ID_REALTEK;
3393     s->eeprom.contents[2] = PCI_DEVICE_ID_REALTEK_8139;
3394 #endif
3395     s->eeprom.contents[7] = s->conf.macaddr.a[0] | s->conf.macaddr.a[1] << 8;
3396     s->eeprom.contents[8] = s->conf.macaddr.a[2] | s->conf.macaddr.a[3] << 8;
3397     s->eeprom.contents[9] = s->conf.macaddr.a[4] | s->conf.macaddr.a[5] << 8;
3398 
3399     s->nic = qemu_new_nic(&net_rtl8139_info, &s->conf,
3400                           object_get_typename(OBJECT(dev)), d->id, s);
3401     qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
3402 
3403     s->cplus_txbuffer = NULL;
3404     s->cplus_txbuffer_len = 0;
3405     s->cplus_txbuffer_offset = 0;
3406 
3407     s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, rtl8139_timer, s);
3408 }
3409 
3410 static void rtl8139_instance_init(Object *obj)
3411 {
3412     RTL8139State *s = RTL8139(obj);
3413 
3414     device_add_bootindex_property(obj, &s->conf.bootindex,
3415                                   "bootindex", "/ethernet-phy@0",
3416                                   DEVICE(obj), NULL);
3417 }
3418 
3419 static Property rtl8139_properties[] = {
3420     DEFINE_NIC_PROPERTIES(RTL8139State, conf),
3421     DEFINE_PROP_END_OF_LIST(),
3422 };
3423 
3424 static void rtl8139_class_init(ObjectClass *klass, void *data)
3425 {
3426     DeviceClass *dc = DEVICE_CLASS(klass);
3427     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
3428 
3429     k->realize = pci_rtl8139_realize;
3430     k->exit = pci_rtl8139_uninit;
3431     k->romfile = "efi-rtl8139.rom";
3432     k->vendor_id = PCI_VENDOR_ID_REALTEK;
3433     k->device_id = PCI_DEVICE_ID_REALTEK_8139;
3434     k->revision = RTL8139_PCI_REVID; /* >=0x20 is for 8139C+ */
3435     k->class_id = PCI_CLASS_NETWORK_ETHERNET;
3436     dc->reset = rtl8139_reset;
3437     dc->vmsd = &vmstate_rtl8139;
3438     device_class_set_props(dc, rtl8139_properties);
3439     set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
3440 }
3441 
3442 static const TypeInfo rtl8139_info = {
3443     .name          = TYPE_RTL8139,
3444     .parent        = TYPE_PCI_DEVICE,
3445     .instance_size = sizeof(RTL8139State),
3446     .class_init    = rtl8139_class_init,
3447     .instance_init = rtl8139_instance_init,
3448     .interfaces = (InterfaceInfo[]) {
3449         { INTERFACE_CONVENTIONAL_PCI_DEVICE },
3450         { },
3451     },
3452 };
3453 
3454 static void rtl8139_register_types(void)
3455 {
3456     type_register_static(&rtl8139_info);
3457 }
3458 
3459 type_init(rtl8139_register_types)
3460