xref: /qemu/hw/net/rtl8139.c (revision 47908a0f)
1 /**
2  * QEMU RTL8139 emulation
3  *
4  * Copyright (c) 2006 Igor Kovalenko
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23 
24  * Modifications:
25  *  2006-Jan-28  Mark Malakanov :   TSAD and CSCR implementation (for Windows driver)
26  *
27  *  2006-Apr-28  Juergen Lock   :   EEPROM emulation changes for FreeBSD driver
28  *                                  HW revision ID changes for FreeBSD driver
29  *
30  *  2006-Jul-01  Igor Kovalenko :   Implemented loopback mode for FreeBSD driver
31  *                                  Corrected packet transfer reassembly routine for 8139C+ mode
32  *                                  Rearranged debugging print statements
33  *                                  Implemented PCI timer interrupt (disabled by default)
34  *                                  Implemented Tally Counters, increased VM load/save version
35  *                                  Implemented IP/TCP/UDP checksum task offloading
36  *
37  *  2006-Jul-04  Igor Kovalenko :   Implemented TCP segmentation offloading
38  *                                  Fixed MTU=1500 for produced ethernet frames
39  *
40  *  2006-Jul-09  Igor Kovalenko :   Fixed TCP header length calculation while processing
41  *                                  segmentation offloading
42  *                                  Removed slirp.h dependency
43  *                                  Added rx/tx buffer reset when enabling rx/tx operation
44  *
45  *  2010-Feb-04  Frediano Ziglio:   Rewrote timer support using QEMU timer only
46  *                                  when strictly needed (required for for
47  *                                  Darwin)
48  *  2011-Mar-22  Benjamin Poirier:  Implemented VLAN offloading
49  */
50 
51 /* For crc32 */
52 #include <zlib.h>
53 
54 #include "hw/hw.h"
55 #include "hw/pci/pci.h"
56 #include "sysemu/dma.h"
57 #include "qemu/timer.h"
58 #include "net/net.h"
59 #include "hw/loader.h"
60 #include "sysemu/sysemu.h"
61 #include "qemu/iov.h"
62 
63 /* debug RTL8139 card */
64 //#define DEBUG_RTL8139 1
65 
66 #define PCI_FREQUENCY 33000000L
67 
68 #define SET_MASKED(input, mask, curr) \
69     ( ( (input) & ~(mask) ) | ( (curr) & (mask) ) )
70 
71 /* arg % size for size which is a power of 2 */
72 #define MOD2(input, size) \
73     ( ( input ) & ( size - 1 )  )
74 
75 #define ETHER_ADDR_LEN 6
76 #define ETHER_TYPE_LEN 2
77 #define ETH_HLEN (ETHER_ADDR_LEN * 2 + ETHER_TYPE_LEN)
78 #define ETH_P_IP    0x0800      /* Internet Protocol packet */
79 #define ETH_P_8021Q 0x8100      /* 802.1Q VLAN Extended Header  */
80 #define ETH_MTU     1500
81 
82 #define VLAN_TCI_LEN 2
83 #define VLAN_HLEN (ETHER_TYPE_LEN + VLAN_TCI_LEN)
84 
85 #if defined (DEBUG_RTL8139)
86 #  define DPRINTF(fmt, ...) \
87     do { fprintf(stderr, "RTL8139: " fmt, ## __VA_ARGS__); } while (0)
88 #else
89 static inline GCC_FMT_ATTR(1, 2) int DPRINTF(const char *fmt, ...)
90 {
91     return 0;
92 }
93 #endif
94 
95 #define TYPE_RTL8139 "rtl8139"
96 
97 #define RTL8139(obj) \
98      OBJECT_CHECK(RTL8139State, (obj), TYPE_RTL8139)
99 
100 /* Symbolic offsets to registers. */
101 enum RTL8139_registers {
102     MAC0 = 0,        /* Ethernet hardware address. */
103     MAR0 = 8,        /* Multicast filter. */
104     TxStatus0 = 0x10,/* Transmit status (Four 32bit registers). C mode only */
105                      /* Dump Tally Conter control register(64bit). C+ mode only */
106     TxAddr0 = 0x20,  /* Tx descriptors (also four 32bit). */
107     RxBuf = 0x30,
108     ChipCmd = 0x37,
109     RxBufPtr = 0x38,
110     RxBufAddr = 0x3A,
111     IntrMask = 0x3C,
112     IntrStatus = 0x3E,
113     TxConfig = 0x40,
114     RxConfig = 0x44,
115     Timer = 0x48,        /* A general-purpose counter. */
116     RxMissed = 0x4C,    /* 24 bits valid, write clears. */
117     Cfg9346 = 0x50,
118     Config0 = 0x51,
119     Config1 = 0x52,
120     FlashReg = 0x54,
121     MediaStatus = 0x58,
122     Config3 = 0x59,
123     Config4 = 0x5A,        /* absent on RTL-8139A */
124     HltClk = 0x5B,
125     MultiIntr = 0x5C,
126     PCIRevisionID = 0x5E,
127     TxSummary = 0x60, /* TSAD register. Transmit Status of All Descriptors*/
128     BasicModeCtrl = 0x62,
129     BasicModeStatus = 0x64,
130     NWayAdvert = 0x66,
131     NWayLPAR = 0x68,
132     NWayExpansion = 0x6A,
133     /* Undocumented registers, but required for proper operation. */
134     FIFOTMS = 0x70,        /* FIFO Control and test. */
135     CSCR = 0x74,        /* Chip Status and Configuration Register. */
136     PARA78 = 0x78,
137     PARA7c = 0x7c,        /* Magic transceiver parameter register. */
138     Config5 = 0xD8,        /* absent on RTL-8139A */
139     /* C+ mode */
140     TxPoll        = 0xD9,    /* Tell chip to check Tx descriptors for work */
141     RxMaxSize    = 0xDA, /* Max size of an Rx packet (8169 only) */
142     CpCmd        = 0xE0, /* C+ Command register (C+ mode only) */
143     IntrMitigate    = 0xE2,    /* rx/tx interrupt mitigation control */
144     RxRingAddrLO    = 0xE4, /* 64-bit start addr of Rx ring */
145     RxRingAddrHI    = 0xE8, /* 64-bit start addr of Rx ring */
146     TxThresh    = 0xEC, /* Early Tx threshold */
147 };
148 
149 enum ClearBitMasks {
150     MultiIntrClear = 0xF000,
151     ChipCmdClear = 0xE2,
152     Config1Clear = (1<<7)|(1<<6)|(1<<3)|(1<<2)|(1<<1),
153 };
154 
155 enum ChipCmdBits {
156     CmdReset = 0x10,
157     CmdRxEnb = 0x08,
158     CmdTxEnb = 0x04,
159     RxBufEmpty = 0x01,
160 };
161 
162 /* C+ mode */
163 enum CplusCmdBits {
164     CPlusRxVLAN   = 0x0040, /* enable receive VLAN detagging */
165     CPlusRxChkSum = 0x0020, /* enable receive checksum offloading */
166     CPlusRxEnb    = 0x0002,
167     CPlusTxEnb    = 0x0001,
168 };
169 
170 /* Interrupt register bits, using my own meaningful names. */
171 enum IntrStatusBits {
172     PCIErr = 0x8000,
173     PCSTimeout = 0x4000,
174     RxFIFOOver = 0x40,
175     RxUnderrun = 0x20, /* Packet Underrun / Link Change */
176     RxOverflow = 0x10,
177     TxErr = 0x08,
178     TxOK = 0x04,
179     RxErr = 0x02,
180     RxOK = 0x01,
181 
182     RxAckBits = RxFIFOOver | RxOverflow | RxOK,
183 };
184 
185 enum TxStatusBits {
186     TxHostOwns = 0x2000,
187     TxUnderrun = 0x4000,
188     TxStatOK = 0x8000,
189     TxOutOfWindow = 0x20000000,
190     TxAborted = 0x40000000,
191     TxCarrierLost = 0x80000000,
192 };
193 enum RxStatusBits {
194     RxMulticast = 0x8000,
195     RxPhysical = 0x4000,
196     RxBroadcast = 0x2000,
197     RxBadSymbol = 0x0020,
198     RxRunt = 0x0010,
199     RxTooLong = 0x0008,
200     RxCRCErr = 0x0004,
201     RxBadAlign = 0x0002,
202     RxStatusOK = 0x0001,
203 };
204 
205 /* Bits in RxConfig. */
206 enum rx_mode_bits {
207     AcceptErr = 0x20,
208     AcceptRunt = 0x10,
209     AcceptBroadcast = 0x08,
210     AcceptMulticast = 0x04,
211     AcceptMyPhys = 0x02,
212     AcceptAllPhys = 0x01,
213 };
214 
215 /* Bits in TxConfig. */
216 enum tx_config_bits {
217 
218         /* Interframe Gap Time. Only TxIFG96 doesn't violate IEEE 802.3 */
219         TxIFGShift = 24,
220         TxIFG84 = (0 << TxIFGShift),    /* 8.4us / 840ns (10 / 100Mbps) */
221         TxIFG88 = (1 << TxIFGShift),    /* 8.8us / 880ns (10 / 100Mbps) */
222         TxIFG92 = (2 << TxIFGShift),    /* 9.2us / 920ns (10 / 100Mbps) */
223         TxIFG96 = (3 << TxIFGShift),    /* 9.6us / 960ns (10 / 100Mbps) */
224 
225     TxLoopBack = (1 << 18) | (1 << 17), /* enable loopback test mode */
226     TxCRC = (1 << 16),    /* DISABLE appending CRC to end of Tx packets */
227     TxClearAbt = (1 << 0),    /* Clear abort (WO) */
228     TxDMAShift = 8,        /* DMA burst value (0-7) is shifted this many bits */
229     TxRetryShift = 4,    /* TXRR value (0-15) is shifted this many bits */
230 
231     TxVersionMask = 0x7C800000, /* mask out version bits 30-26, 23 */
232 };
233 
234 
235 /* Transmit Status of All Descriptors (TSAD) Register */
236 enum TSAD_bits {
237  TSAD_TOK3 = 1<<15, // TOK bit of Descriptor 3
238  TSAD_TOK2 = 1<<14, // TOK bit of Descriptor 2
239  TSAD_TOK1 = 1<<13, // TOK bit of Descriptor 1
240  TSAD_TOK0 = 1<<12, // TOK bit of Descriptor 0
241  TSAD_TUN3 = 1<<11, // TUN bit of Descriptor 3
242  TSAD_TUN2 = 1<<10, // TUN bit of Descriptor 2
243  TSAD_TUN1 = 1<<9, // TUN bit of Descriptor 1
244  TSAD_TUN0 = 1<<8, // TUN bit of Descriptor 0
245  TSAD_TABT3 = 1<<07, // TABT bit of Descriptor 3
246  TSAD_TABT2 = 1<<06, // TABT bit of Descriptor 2
247  TSAD_TABT1 = 1<<05, // TABT bit of Descriptor 1
248  TSAD_TABT0 = 1<<04, // TABT bit of Descriptor 0
249  TSAD_OWN3 = 1<<03, // OWN bit of Descriptor 3
250  TSAD_OWN2 = 1<<02, // OWN bit of Descriptor 2
251  TSAD_OWN1 = 1<<01, // OWN bit of Descriptor 1
252  TSAD_OWN0 = 1<<00, // OWN bit of Descriptor 0
253 };
254 
255 
256 /* Bits in Config1 */
257 enum Config1Bits {
258     Cfg1_PM_Enable = 0x01,
259     Cfg1_VPD_Enable = 0x02,
260     Cfg1_PIO = 0x04,
261     Cfg1_MMIO = 0x08,
262     LWAKE = 0x10,        /* not on 8139, 8139A */
263     Cfg1_Driver_Load = 0x20,
264     Cfg1_LED0 = 0x40,
265     Cfg1_LED1 = 0x80,
266     SLEEP = (1 << 1),    /* only on 8139, 8139A */
267     PWRDN = (1 << 0),    /* only on 8139, 8139A */
268 };
269 
270 /* Bits in Config3 */
271 enum Config3Bits {
272     Cfg3_FBtBEn    = (1 << 0), /* 1 = Fast Back to Back */
273     Cfg3_FuncRegEn = (1 << 1), /* 1 = enable CardBus Function registers */
274     Cfg3_CLKRUN_En = (1 << 2), /* 1 = enable CLKRUN */
275     Cfg3_CardB_En  = (1 << 3), /* 1 = enable CardBus registers */
276     Cfg3_LinkUp    = (1 << 4), /* 1 = wake up on link up */
277     Cfg3_Magic     = (1 << 5), /* 1 = wake up on Magic Packet (tm) */
278     Cfg3_PARM_En   = (1 << 6), /* 0 = software can set twister parameters */
279     Cfg3_GNTSel    = (1 << 7), /* 1 = delay 1 clock from PCI GNT signal */
280 };
281 
282 /* Bits in Config4 */
283 enum Config4Bits {
284     LWPTN = (1 << 2),    /* not on 8139, 8139A */
285 };
286 
287 /* Bits in Config5 */
288 enum Config5Bits {
289     Cfg5_PME_STS     = (1 << 0), /* 1 = PCI reset resets PME_Status */
290     Cfg5_LANWake     = (1 << 1), /* 1 = enable LANWake signal */
291     Cfg5_LDPS        = (1 << 2), /* 0 = save power when link is down */
292     Cfg5_FIFOAddrPtr = (1 << 3), /* Realtek internal SRAM testing */
293     Cfg5_UWF         = (1 << 4), /* 1 = accept unicast wakeup frame */
294     Cfg5_MWF         = (1 << 5), /* 1 = accept multicast wakeup frame */
295     Cfg5_BWF         = (1 << 6), /* 1 = accept broadcast wakeup frame */
296 };
297 
298 enum RxConfigBits {
299     /* rx fifo threshold */
300     RxCfgFIFOShift = 13,
301     RxCfgFIFONone = (7 << RxCfgFIFOShift),
302 
303     /* Max DMA burst */
304     RxCfgDMAShift = 8,
305     RxCfgDMAUnlimited = (7 << RxCfgDMAShift),
306 
307     /* rx ring buffer length */
308     RxCfgRcv8K = 0,
309     RxCfgRcv16K = (1 << 11),
310     RxCfgRcv32K = (1 << 12),
311     RxCfgRcv64K = (1 << 11) | (1 << 12),
312 
313     /* Disable packet wrap at end of Rx buffer. (not possible with 64k) */
314     RxNoWrap = (1 << 7),
315 };
316 
317 /* Twister tuning parameters from RealTek.
318    Completely undocumented, but required to tune bad links on some boards. */
319 /*
320 enum CSCRBits {
321     CSCR_LinkOKBit = 0x0400,
322     CSCR_LinkChangeBit = 0x0800,
323     CSCR_LinkStatusBits = 0x0f000,
324     CSCR_LinkDownOffCmd = 0x003c0,
325     CSCR_LinkDownCmd = 0x0f3c0,
326 */
327 enum CSCRBits {
328     CSCR_Testfun = 1<<15, /* 1 = Auto-neg speeds up internal timer, WO, def 0 */
329     CSCR_LD  = 1<<9,  /* Active low TPI link disable signal. When low, TPI still transmits link pulses and TPI stays in good link state. def 1*/
330     CSCR_HEART_BIT = 1<<8,  /* 1 = HEART BEAT enable, 0 = HEART BEAT disable. HEART BEAT function is only valid in 10Mbps mode. def 1*/
331     CSCR_JBEN = 1<<7,  /* 1 = enable jabber function. 0 = disable jabber function, def 1*/
332     CSCR_F_LINK_100 = 1<<6, /* Used to login force good link in 100Mbps for diagnostic purposes. 1 = DISABLE, 0 = ENABLE. def 1*/
333     CSCR_F_Connect  = 1<<5,  /* Assertion of this bit forces the disconnect function to be bypassed. def 0*/
334     CSCR_Con_status = 1<<3, /* This bit indicates the status of the connection. 1 = valid connected link detected; 0 = disconnected link detected. RO def 0*/
335     CSCR_Con_status_En = 1<<2, /* Assertion of this bit configures LED1 pin to indicate connection status. def 0*/
336     CSCR_PASS_SCR = 1<<0, /* Bypass Scramble, def 0*/
337 };
338 
339 enum Cfg9346Bits {
340     Cfg9346_Normal = 0x00,
341     Cfg9346_Autoload = 0x40,
342     Cfg9346_Programming = 0x80,
343     Cfg9346_ConfigWrite = 0xC0,
344 };
345 
346 typedef enum {
347     CH_8139 = 0,
348     CH_8139_K,
349     CH_8139A,
350     CH_8139A_G,
351     CH_8139B,
352     CH_8130,
353     CH_8139C,
354     CH_8100,
355     CH_8100B_8139D,
356     CH_8101,
357 } chip_t;
358 
359 enum chip_flags {
360     HasHltClk = (1 << 0),
361     HasLWake = (1 << 1),
362 };
363 
364 #define HW_REVID(b30, b29, b28, b27, b26, b23, b22) \
365     (b30<<30 | b29<<29 | b28<<28 | b27<<27 | b26<<26 | b23<<23 | b22<<22)
366 #define HW_REVID_MASK    HW_REVID(1, 1, 1, 1, 1, 1, 1)
367 
368 #define RTL8139_PCI_REVID_8139      0x10
369 #define RTL8139_PCI_REVID_8139CPLUS 0x20
370 
371 #define RTL8139_PCI_REVID           RTL8139_PCI_REVID_8139CPLUS
372 
373 /* Size is 64 * 16bit words */
374 #define EEPROM_9346_ADDR_BITS 6
375 #define EEPROM_9346_SIZE  (1 << EEPROM_9346_ADDR_BITS)
376 #define EEPROM_9346_ADDR_MASK (EEPROM_9346_SIZE - 1)
377 
378 enum Chip9346Operation
379 {
380     Chip9346_op_mask = 0xc0,          /* 10 zzzzzz */
381     Chip9346_op_read = 0x80,          /* 10 AAAAAA */
382     Chip9346_op_write = 0x40,         /* 01 AAAAAA D(15)..D(0) */
383     Chip9346_op_ext_mask = 0xf0,      /* 11 zzzzzz */
384     Chip9346_op_write_enable = 0x30,  /* 00 11zzzz */
385     Chip9346_op_write_all = 0x10,     /* 00 01zzzz */
386     Chip9346_op_write_disable = 0x00, /* 00 00zzzz */
387 };
388 
389 enum Chip9346Mode
390 {
391     Chip9346_none = 0,
392     Chip9346_enter_command_mode,
393     Chip9346_read_command,
394     Chip9346_data_read,      /* from output register */
395     Chip9346_data_write,     /* to input register, then to contents at specified address */
396     Chip9346_data_write_all, /* to input register, then filling contents */
397 };
398 
399 typedef struct EEprom9346
400 {
401     uint16_t contents[EEPROM_9346_SIZE];
402     int      mode;
403     uint32_t tick;
404     uint8_t  address;
405     uint16_t input;
406     uint16_t output;
407 
408     uint8_t eecs;
409     uint8_t eesk;
410     uint8_t eedi;
411     uint8_t eedo;
412 } EEprom9346;
413 
414 typedef struct RTL8139TallyCounters
415 {
416     /* Tally counters */
417     uint64_t   TxOk;
418     uint64_t   RxOk;
419     uint64_t   TxERR;
420     uint32_t   RxERR;
421     uint16_t   MissPkt;
422     uint16_t   FAE;
423     uint32_t   Tx1Col;
424     uint32_t   TxMCol;
425     uint64_t   RxOkPhy;
426     uint64_t   RxOkBrd;
427     uint32_t   RxOkMul;
428     uint16_t   TxAbt;
429     uint16_t   TxUndrn;
430 } RTL8139TallyCounters;
431 
432 /* Clears all tally counters */
433 static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters);
434 
435 typedef struct RTL8139State {
436     /*< private >*/
437     PCIDevice parent_obj;
438     /*< public >*/
439 
440     uint8_t phys[8]; /* mac address */
441     uint8_t mult[8]; /* multicast mask array */
442 
443     uint32_t TxStatus[4]; /* TxStatus0 in C mode*/ /* also DTCCR[0] and DTCCR[1] in C+ mode */
444     uint32_t TxAddr[4];   /* TxAddr0 */
445     uint32_t RxBuf;       /* Receive buffer */
446     uint32_t RxBufferSize;/* internal variable, receive ring buffer size in C mode */
447     uint32_t RxBufPtr;
448     uint32_t RxBufAddr;
449 
450     uint16_t IntrStatus;
451     uint16_t IntrMask;
452 
453     uint32_t TxConfig;
454     uint32_t RxConfig;
455     uint32_t RxMissed;
456 
457     uint16_t CSCR;
458 
459     uint8_t  Cfg9346;
460     uint8_t  Config0;
461     uint8_t  Config1;
462     uint8_t  Config3;
463     uint8_t  Config4;
464     uint8_t  Config5;
465 
466     uint8_t  clock_enabled;
467     uint8_t  bChipCmdState;
468 
469     uint16_t MultiIntr;
470 
471     uint16_t BasicModeCtrl;
472     uint16_t BasicModeStatus;
473     uint16_t NWayAdvert;
474     uint16_t NWayLPAR;
475     uint16_t NWayExpansion;
476 
477     uint16_t CpCmd;
478     uint8_t  TxThresh;
479 
480     NICState *nic;
481     NICConf conf;
482 
483     /* C ring mode */
484     uint32_t   currTxDesc;
485 
486     /* C+ mode */
487     uint32_t   cplus_enabled;
488 
489     uint32_t   currCPlusRxDesc;
490     uint32_t   currCPlusTxDesc;
491 
492     uint32_t   RxRingAddrLO;
493     uint32_t   RxRingAddrHI;
494 
495     EEprom9346 eeprom;
496 
497     uint32_t   TCTR;
498     uint32_t   TimerInt;
499     int64_t    TCTR_base;
500 
501     /* Tally counters */
502     RTL8139TallyCounters tally_counters;
503 
504     /* Non-persistent data */
505     uint8_t   *cplus_txbuffer;
506     int        cplus_txbuffer_len;
507     int        cplus_txbuffer_offset;
508 
509     /* PCI interrupt timer */
510     QEMUTimer *timer;
511     int64_t TimerExpire;
512 
513     MemoryRegion bar_io;
514     MemoryRegion bar_mem;
515 
516     /* Support migration to/from old versions */
517     int rtl8139_mmio_io_addr_dummy;
518 } RTL8139State;
519 
520 /* Writes tally counters to memory via DMA */
521 static void RTL8139TallyCounters_dma_write(RTL8139State *s, dma_addr_t tc_addr);
522 
523 static void rtl8139_set_next_tctr_time(RTL8139State *s, int64_t current_time);
524 
525 static void prom9346_decode_command(EEprom9346 *eeprom, uint8_t command)
526 {
527     DPRINTF("eeprom command 0x%02x\n", command);
528 
529     switch (command & Chip9346_op_mask)
530     {
531         case Chip9346_op_read:
532         {
533             eeprom->address = command & EEPROM_9346_ADDR_MASK;
534             eeprom->output = eeprom->contents[eeprom->address];
535             eeprom->eedo = 0;
536             eeprom->tick = 0;
537             eeprom->mode = Chip9346_data_read;
538             DPRINTF("eeprom read from address 0x%02x data=0x%04x\n",
539                 eeprom->address, eeprom->output);
540         }
541         break;
542 
543         case Chip9346_op_write:
544         {
545             eeprom->address = command & EEPROM_9346_ADDR_MASK;
546             eeprom->input = 0;
547             eeprom->tick = 0;
548             eeprom->mode = Chip9346_none; /* Chip9346_data_write */
549             DPRINTF("eeprom begin write to address 0x%02x\n",
550                 eeprom->address);
551         }
552         break;
553         default:
554             eeprom->mode = Chip9346_none;
555             switch (command & Chip9346_op_ext_mask)
556             {
557                 case Chip9346_op_write_enable:
558                     DPRINTF("eeprom write enabled\n");
559                     break;
560                 case Chip9346_op_write_all:
561                     DPRINTF("eeprom begin write all\n");
562                     break;
563                 case Chip9346_op_write_disable:
564                     DPRINTF("eeprom write disabled\n");
565                     break;
566             }
567             break;
568     }
569 }
570 
571 static void prom9346_shift_clock(EEprom9346 *eeprom)
572 {
573     int bit = eeprom->eedi?1:0;
574 
575     ++ eeprom->tick;
576 
577     DPRINTF("eeprom: tick %d eedi=%d eedo=%d\n", eeprom->tick, eeprom->eedi,
578         eeprom->eedo);
579 
580     switch (eeprom->mode)
581     {
582         case Chip9346_enter_command_mode:
583             if (bit)
584             {
585                 eeprom->mode = Chip9346_read_command;
586                 eeprom->tick = 0;
587                 eeprom->input = 0;
588                 DPRINTF("eeprom: +++ synchronized, begin command read\n");
589             }
590             break;
591 
592         case Chip9346_read_command:
593             eeprom->input = (eeprom->input << 1) | (bit & 1);
594             if (eeprom->tick == 8)
595             {
596                 prom9346_decode_command(eeprom, eeprom->input & 0xff);
597             }
598             break;
599 
600         case Chip9346_data_read:
601             eeprom->eedo = (eeprom->output & 0x8000)?1:0;
602             eeprom->output <<= 1;
603             if (eeprom->tick == 16)
604             {
605 #if 1
606         // the FreeBSD drivers (rl and re) don't explicitly toggle
607         // CS between reads (or does setting Cfg9346 to 0 count too?),
608         // so we need to enter wait-for-command state here
609                 eeprom->mode = Chip9346_enter_command_mode;
610                 eeprom->input = 0;
611                 eeprom->tick = 0;
612 
613                 DPRINTF("eeprom: +++ end of read, awaiting next command\n");
614 #else
615         // original behaviour
616                 ++eeprom->address;
617                 eeprom->address &= EEPROM_9346_ADDR_MASK;
618                 eeprom->output = eeprom->contents[eeprom->address];
619                 eeprom->tick = 0;
620 
621                 DPRINTF("eeprom: +++ read next address 0x%02x data=0x%04x\n",
622                     eeprom->address, eeprom->output);
623 #endif
624             }
625             break;
626 
627         case Chip9346_data_write:
628             eeprom->input = (eeprom->input << 1) | (bit & 1);
629             if (eeprom->tick == 16)
630             {
631                 DPRINTF("eeprom write to address 0x%02x data=0x%04x\n",
632                     eeprom->address, eeprom->input);
633 
634                 eeprom->contents[eeprom->address] = eeprom->input;
635                 eeprom->mode = Chip9346_none; /* waiting for next command after CS cycle */
636                 eeprom->tick = 0;
637                 eeprom->input = 0;
638             }
639             break;
640 
641         case Chip9346_data_write_all:
642             eeprom->input = (eeprom->input << 1) | (bit & 1);
643             if (eeprom->tick == 16)
644             {
645                 int i;
646                 for (i = 0; i < EEPROM_9346_SIZE; i++)
647                 {
648                     eeprom->contents[i] = eeprom->input;
649                 }
650                 DPRINTF("eeprom filled with data=0x%04x\n", eeprom->input);
651 
652                 eeprom->mode = Chip9346_enter_command_mode;
653                 eeprom->tick = 0;
654                 eeprom->input = 0;
655             }
656             break;
657 
658         default:
659             break;
660     }
661 }
662 
663 static int prom9346_get_wire(RTL8139State *s)
664 {
665     EEprom9346 *eeprom = &s->eeprom;
666     if (!eeprom->eecs)
667         return 0;
668 
669     return eeprom->eedo;
670 }
671 
672 /* FIXME: This should be merged into/replaced by eeprom93xx.c.  */
673 static void prom9346_set_wire(RTL8139State *s, int eecs, int eesk, int eedi)
674 {
675     EEprom9346 *eeprom = &s->eeprom;
676     uint8_t old_eecs = eeprom->eecs;
677     uint8_t old_eesk = eeprom->eesk;
678 
679     eeprom->eecs = eecs;
680     eeprom->eesk = eesk;
681     eeprom->eedi = eedi;
682 
683     DPRINTF("eeprom: +++ wires CS=%d SK=%d DI=%d DO=%d\n", eeprom->eecs,
684         eeprom->eesk, eeprom->eedi, eeprom->eedo);
685 
686     if (!old_eecs && eecs)
687     {
688         /* Synchronize start */
689         eeprom->tick = 0;
690         eeprom->input = 0;
691         eeprom->output = 0;
692         eeprom->mode = Chip9346_enter_command_mode;
693 
694         DPRINTF("=== eeprom: begin access, enter command mode\n");
695     }
696 
697     if (!eecs)
698     {
699         DPRINTF("=== eeprom: end access\n");
700         return;
701     }
702 
703     if (!old_eesk && eesk)
704     {
705         /* SK front rules */
706         prom9346_shift_clock(eeprom);
707     }
708 }
709 
710 static void rtl8139_update_irq(RTL8139State *s)
711 {
712     PCIDevice *d = PCI_DEVICE(s);
713     int isr;
714     isr = (s->IntrStatus & s->IntrMask) & 0xffff;
715 
716     DPRINTF("Set IRQ to %d (%04x %04x)\n", isr ? 1 : 0, s->IntrStatus,
717         s->IntrMask);
718 
719     pci_set_irq(d, (isr != 0));
720 }
721 
722 static int rtl8139_RxWrap(RTL8139State *s)
723 {
724     /* wrapping enabled; assume 1.5k more buffer space if size < 65536 */
725     return (s->RxConfig & (1 << 7));
726 }
727 
728 static int rtl8139_receiver_enabled(RTL8139State *s)
729 {
730     return s->bChipCmdState & CmdRxEnb;
731 }
732 
733 static int rtl8139_transmitter_enabled(RTL8139State *s)
734 {
735     return s->bChipCmdState & CmdTxEnb;
736 }
737 
738 static int rtl8139_cp_receiver_enabled(RTL8139State *s)
739 {
740     return s->CpCmd & CPlusRxEnb;
741 }
742 
743 static int rtl8139_cp_transmitter_enabled(RTL8139State *s)
744 {
745     return s->CpCmd & CPlusTxEnb;
746 }
747 
748 static void rtl8139_write_buffer(RTL8139State *s, const void *buf, int size)
749 {
750     PCIDevice *d = PCI_DEVICE(s);
751 
752     if (s->RxBufAddr + size > s->RxBufferSize)
753     {
754         int wrapped = MOD2(s->RxBufAddr + size, s->RxBufferSize);
755 
756         /* write packet data */
757         if (wrapped && !(s->RxBufferSize < 65536 && rtl8139_RxWrap(s)))
758         {
759             DPRINTF(">>> rx packet wrapped in buffer at %d\n", size - wrapped);
760 
761             if (size > wrapped)
762             {
763                 pci_dma_write(d, s->RxBuf + s->RxBufAddr,
764                               buf, size-wrapped);
765             }
766 
767             /* reset buffer pointer */
768             s->RxBufAddr = 0;
769 
770             pci_dma_write(d, s->RxBuf + s->RxBufAddr,
771                           buf + (size-wrapped), wrapped);
772 
773             s->RxBufAddr = wrapped;
774 
775             return;
776         }
777     }
778 
779     /* non-wrapping path or overwrapping enabled */
780     pci_dma_write(d, s->RxBuf + s->RxBufAddr, buf, size);
781 
782     s->RxBufAddr += size;
783 }
784 
785 #define MIN_BUF_SIZE 60
786 static inline dma_addr_t rtl8139_addr64(uint32_t low, uint32_t high)
787 {
788     return low | ((uint64_t)high << 32);
789 }
790 
791 /* Workaround for buggy guest driver such as linux who allocates rx
792  * rings after the receiver were enabled. */
793 static bool rtl8139_cp_rx_valid(RTL8139State *s)
794 {
795     return !(s->RxRingAddrLO == 0 && s->RxRingAddrHI == 0);
796 }
797 
798 static int rtl8139_can_receive(NetClientState *nc)
799 {
800     RTL8139State *s = qemu_get_nic_opaque(nc);
801     int avail;
802 
803     /* Receive (drop) packets if card is disabled.  */
804     if (!s->clock_enabled)
805       return 1;
806     if (!rtl8139_receiver_enabled(s))
807       return 1;
808 
809     if (rtl8139_cp_receiver_enabled(s) && rtl8139_cp_rx_valid(s)) {
810         /* ??? Flow control not implemented in c+ mode.
811            This is a hack to work around slirp deficiencies anyway.  */
812         return 1;
813     } else {
814         avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr,
815                      s->RxBufferSize);
816         return (avail == 0 || avail >= 1514 || (s->IntrMask & RxOverflow));
817     }
818 }
819 
820 static ssize_t rtl8139_do_receive(NetClientState *nc, const uint8_t *buf, size_t size_, int do_interrupt)
821 {
822     RTL8139State *s = qemu_get_nic_opaque(nc);
823     PCIDevice *d = PCI_DEVICE(s);
824     /* size is the length of the buffer passed to the driver */
825     int size = size_;
826     const uint8_t *dot1q_buf = NULL;
827 
828     uint32_t packet_header = 0;
829 
830     uint8_t buf1[MIN_BUF_SIZE + VLAN_HLEN];
831     static const uint8_t broadcast_macaddr[6] =
832         { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
833 
834     DPRINTF(">>> received len=%d\n", size);
835 
836     /* test if board clock is stopped */
837     if (!s->clock_enabled)
838     {
839         DPRINTF("stopped ==========================\n");
840         return -1;
841     }
842 
843     /* first check if receiver is enabled */
844 
845     if (!rtl8139_receiver_enabled(s))
846     {
847         DPRINTF("receiver disabled ================\n");
848         return -1;
849     }
850 
851     /* XXX: check this */
852     if (s->RxConfig & AcceptAllPhys) {
853         /* promiscuous: receive all */
854         DPRINTF(">>> packet received in promiscuous mode\n");
855 
856     } else {
857         if (!memcmp(buf,  broadcast_macaddr, 6)) {
858             /* broadcast address */
859             if (!(s->RxConfig & AcceptBroadcast))
860             {
861                 DPRINTF(">>> broadcast packet rejected\n");
862 
863                 /* update tally counter */
864                 ++s->tally_counters.RxERR;
865 
866                 return size;
867             }
868 
869             packet_header |= RxBroadcast;
870 
871             DPRINTF(">>> broadcast packet received\n");
872 
873             /* update tally counter */
874             ++s->tally_counters.RxOkBrd;
875 
876         } else if (buf[0] & 0x01) {
877             /* multicast */
878             if (!(s->RxConfig & AcceptMulticast))
879             {
880                 DPRINTF(">>> multicast packet rejected\n");
881 
882                 /* update tally counter */
883                 ++s->tally_counters.RxERR;
884 
885                 return size;
886             }
887 
888             int mcast_idx = compute_mcast_idx(buf);
889 
890             if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
891             {
892                 DPRINTF(">>> multicast address mismatch\n");
893 
894                 /* update tally counter */
895                 ++s->tally_counters.RxERR;
896 
897                 return size;
898             }
899 
900             packet_header |= RxMulticast;
901 
902             DPRINTF(">>> multicast packet received\n");
903 
904             /* update tally counter */
905             ++s->tally_counters.RxOkMul;
906 
907         } else if (s->phys[0] == buf[0] &&
908                    s->phys[1] == buf[1] &&
909                    s->phys[2] == buf[2] &&
910                    s->phys[3] == buf[3] &&
911                    s->phys[4] == buf[4] &&
912                    s->phys[5] == buf[5]) {
913             /* match */
914             if (!(s->RxConfig & AcceptMyPhys))
915             {
916                 DPRINTF(">>> rejecting physical address matching packet\n");
917 
918                 /* update tally counter */
919                 ++s->tally_counters.RxERR;
920 
921                 return size;
922             }
923 
924             packet_header |= RxPhysical;
925 
926             DPRINTF(">>> physical address matching packet received\n");
927 
928             /* update tally counter */
929             ++s->tally_counters.RxOkPhy;
930 
931         } else {
932 
933             DPRINTF(">>> unknown packet\n");
934 
935             /* update tally counter */
936             ++s->tally_counters.RxERR;
937 
938             return size;
939         }
940     }
941 
942     /* if too small buffer, then expand it
943      * Include some tailroom in case a vlan tag is later removed. */
944     if (size < MIN_BUF_SIZE + VLAN_HLEN) {
945         memcpy(buf1, buf, size);
946         memset(buf1 + size, 0, MIN_BUF_SIZE + VLAN_HLEN - size);
947         buf = buf1;
948         if (size < MIN_BUF_SIZE) {
949             size = MIN_BUF_SIZE;
950         }
951     }
952 
953     if (rtl8139_cp_receiver_enabled(s))
954     {
955         if (!rtl8139_cp_rx_valid(s)) {
956             return size;
957         }
958 
959         DPRINTF("in C+ Rx mode ================\n");
960 
961         /* begin C+ receiver mode */
962 
963 /* w0 ownership flag */
964 #define CP_RX_OWN (1<<31)
965 /* w0 end of ring flag */
966 #define CP_RX_EOR (1<<30)
967 /* w0 bits 0...12 : buffer size */
968 #define CP_RX_BUFFER_SIZE_MASK ((1<<13) - 1)
969 /* w1 tag available flag */
970 #define CP_RX_TAVA (1<<16)
971 /* w1 bits 0...15 : VLAN tag */
972 #define CP_RX_VLAN_TAG_MASK ((1<<16) - 1)
973 /* w2 low  32bit of Rx buffer ptr */
974 /* w3 high 32bit of Rx buffer ptr */
975 
976         int descriptor = s->currCPlusRxDesc;
977         dma_addr_t cplus_rx_ring_desc;
978 
979         cplus_rx_ring_desc = rtl8139_addr64(s->RxRingAddrLO, s->RxRingAddrHI);
980         cplus_rx_ring_desc += 16 * descriptor;
981 
982         DPRINTF("+++ C+ mode reading RX descriptor %d from host memory at "
983             "%08x %08x = "DMA_ADDR_FMT"\n", descriptor, s->RxRingAddrHI,
984             s->RxRingAddrLO, cplus_rx_ring_desc);
985 
986         uint32_t val, rxdw0,rxdw1,rxbufLO,rxbufHI;
987 
988         pci_dma_read(d, cplus_rx_ring_desc, &val, 4);
989         rxdw0 = le32_to_cpu(val);
990         pci_dma_read(d, cplus_rx_ring_desc+4, &val, 4);
991         rxdw1 = le32_to_cpu(val);
992         pci_dma_read(d, cplus_rx_ring_desc+8, &val, 4);
993         rxbufLO = le32_to_cpu(val);
994         pci_dma_read(d, cplus_rx_ring_desc+12, &val, 4);
995         rxbufHI = le32_to_cpu(val);
996 
997         DPRINTF("+++ C+ mode RX descriptor %d %08x %08x %08x %08x\n",
998             descriptor, rxdw0, rxdw1, rxbufLO, rxbufHI);
999 
1000         if (!(rxdw0 & CP_RX_OWN))
1001         {
1002             DPRINTF("C+ Rx mode : descriptor %d is owned by host\n",
1003                 descriptor);
1004 
1005             s->IntrStatus |= RxOverflow;
1006             ++s->RxMissed;
1007 
1008             /* update tally counter */
1009             ++s->tally_counters.RxERR;
1010             ++s->tally_counters.MissPkt;
1011 
1012             rtl8139_update_irq(s);
1013             return size_;
1014         }
1015 
1016         uint32_t rx_space = rxdw0 & CP_RX_BUFFER_SIZE_MASK;
1017 
1018         /* write VLAN info to descriptor variables. */
1019         if (s->CpCmd & CPlusRxVLAN && be16_to_cpup((uint16_t *)
1020                 &buf[ETHER_ADDR_LEN * 2]) == ETH_P_8021Q) {
1021             dot1q_buf = &buf[ETHER_ADDR_LEN * 2];
1022             size -= VLAN_HLEN;
1023             /* if too small buffer, use the tailroom added duing expansion */
1024             if (size < MIN_BUF_SIZE) {
1025                 size = MIN_BUF_SIZE;
1026             }
1027 
1028             rxdw1 &= ~CP_RX_VLAN_TAG_MASK;
1029             /* BE + ~le_to_cpu()~ + cpu_to_le() = BE */
1030             rxdw1 |= CP_RX_TAVA | le16_to_cpup((uint16_t *)
1031                 &dot1q_buf[ETHER_TYPE_LEN]);
1032 
1033             DPRINTF("C+ Rx mode : extracted vlan tag with tci: ""%u\n",
1034                 be16_to_cpup((uint16_t *)&dot1q_buf[ETHER_TYPE_LEN]));
1035         } else {
1036             /* reset VLAN tag flag */
1037             rxdw1 &= ~CP_RX_TAVA;
1038         }
1039 
1040         /* TODO: scatter the packet over available receive ring descriptors space */
1041 
1042         if (size+4 > rx_space)
1043         {
1044             DPRINTF("C+ Rx mode : descriptor %d size %d received %d + 4\n",
1045                 descriptor, rx_space, size);
1046 
1047             s->IntrStatus |= RxOverflow;
1048             ++s->RxMissed;
1049 
1050             /* update tally counter */
1051             ++s->tally_counters.RxERR;
1052             ++s->tally_counters.MissPkt;
1053 
1054             rtl8139_update_irq(s);
1055             return size_;
1056         }
1057 
1058         dma_addr_t rx_addr = rtl8139_addr64(rxbufLO, rxbufHI);
1059 
1060         /* receive/copy to target memory */
1061         if (dot1q_buf) {
1062             pci_dma_write(d, rx_addr, buf, 2 * ETHER_ADDR_LEN);
1063             pci_dma_write(d, rx_addr + 2 * ETHER_ADDR_LEN,
1064                           buf + 2 * ETHER_ADDR_LEN + VLAN_HLEN,
1065                           size - 2 * ETHER_ADDR_LEN);
1066         } else {
1067             pci_dma_write(d, rx_addr, buf, size);
1068         }
1069 
1070         if (s->CpCmd & CPlusRxChkSum)
1071         {
1072             /* do some packet checksumming */
1073         }
1074 
1075         /* write checksum */
1076         val = cpu_to_le32(crc32(0, buf, size_));
1077         pci_dma_write(d, rx_addr+size, (uint8_t *)&val, 4);
1078 
1079 /* first segment of received packet flag */
1080 #define CP_RX_STATUS_FS (1<<29)
1081 /* last segment of received packet flag */
1082 #define CP_RX_STATUS_LS (1<<28)
1083 /* multicast packet flag */
1084 #define CP_RX_STATUS_MAR (1<<26)
1085 /* physical-matching packet flag */
1086 #define CP_RX_STATUS_PAM (1<<25)
1087 /* broadcast packet flag */
1088 #define CP_RX_STATUS_BAR (1<<24)
1089 /* runt packet flag */
1090 #define CP_RX_STATUS_RUNT (1<<19)
1091 /* crc error flag */
1092 #define CP_RX_STATUS_CRC (1<<18)
1093 /* IP checksum error flag */
1094 #define CP_RX_STATUS_IPF (1<<15)
1095 /* UDP checksum error flag */
1096 #define CP_RX_STATUS_UDPF (1<<14)
1097 /* TCP checksum error flag */
1098 #define CP_RX_STATUS_TCPF (1<<13)
1099 
1100         /* transfer ownership to target */
1101         rxdw0 &= ~CP_RX_OWN;
1102 
1103         /* set first segment bit */
1104         rxdw0 |= CP_RX_STATUS_FS;
1105 
1106         /* set last segment bit */
1107         rxdw0 |= CP_RX_STATUS_LS;
1108 
1109         /* set received packet type flags */
1110         if (packet_header & RxBroadcast)
1111             rxdw0 |= CP_RX_STATUS_BAR;
1112         if (packet_header & RxMulticast)
1113             rxdw0 |= CP_RX_STATUS_MAR;
1114         if (packet_header & RxPhysical)
1115             rxdw0 |= CP_RX_STATUS_PAM;
1116 
1117         /* set received size */
1118         rxdw0 &= ~CP_RX_BUFFER_SIZE_MASK;
1119         rxdw0 |= (size+4);
1120 
1121         /* update ring data */
1122         val = cpu_to_le32(rxdw0);
1123         pci_dma_write(d, cplus_rx_ring_desc, (uint8_t *)&val, 4);
1124         val = cpu_to_le32(rxdw1);
1125         pci_dma_write(d, cplus_rx_ring_desc+4, (uint8_t *)&val, 4);
1126 
1127         /* update tally counter */
1128         ++s->tally_counters.RxOk;
1129 
1130         /* seek to next Rx descriptor */
1131         if (rxdw0 & CP_RX_EOR)
1132         {
1133             s->currCPlusRxDesc = 0;
1134         }
1135         else
1136         {
1137             ++s->currCPlusRxDesc;
1138         }
1139 
1140         DPRINTF("done C+ Rx mode ----------------\n");
1141 
1142     }
1143     else
1144     {
1145         DPRINTF("in ring Rx mode ================\n");
1146 
1147         /* begin ring receiver mode */
1148         int avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr, s->RxBufferSize);
1149 
1150         /* if receiver buffer is empty then avail == 0 */
1151 
1152         if (avail != 0 && size + 8 >= avail)
1153         {
1154             DPRINTF("rx overflow: rx buffer length %d head 0x%04x "
1155                 "read 0x%04x === available 0x%04x need 0x%04x\n",
1156                 s->RxBufferSize, s->RxBufAddr, s->RxBufPtr, avail, size + 8);
1157 
1158             s->IntrStatus |= RxOverflow;
1159             ++s->RxMissed;
1160             rtl8139_update_irq(s);
1161             return size_;
1162         }
1163 
1164         packet_header |= RxStatusOK;
1165 
1166         packet_header |= (((size+4) << 16) & 0xffff0000);
1167 
1168         /* write header */
1169         uint32_t val = cpu_to_le32(packet_header);
1170 
1171         rtl8139_write_buffer(s, (uint8_t *)&val, 4);
1172 
1173         rtl8139_write_buffer(s, buf, size);
1174 
1175         /* write checksum */
1176         val = cpu_to_le32(crc32(0, buf, size));
1177         rtl8139_write_buffer(s, (uint8_t *)&val, 4);
1178 
1179         /* correct buffer write pointer */
1180         s->RxBufAddr = MOD2((s->RxBufAddr + 3) & ~0x3, s->RxBufferSize);
1181 
1182         /* now we can signal we have received something */
1183 
1184         DPRINTF("received: rx buffer length %d head 0x%04x read 0x%04x\n",
1185             s->RxBufferSize, s->RxBufAddr, s->RxBufPtr);
1186     }
1187 
1188     s->IntrStatus |= RxOK;
1189 
1190     if (do_interrupt)
1191     {
1192         rtl8139_update_irq(s);
1193     }
1194 
1195     return size_;
1196 }
1197 
1198 static ssize_t rtl8139_receive(NetClientState *nc, const uint8_t *buf, size_t size)
1199 {
1200     return rtl8139_do_receive(nc, buf, size, 1);
1201 }
1202 
1203 static void rtl8139_reset_rxring(RTL8139State *s, uint32_t bufferSize)
1204 {
1205     s->RxBufferSize = bufferSize;
1206     s->RxBufPtr  = 0;
1207     s->RxBufAddr = 0;
1208 }
1209 
1210 static void rtl8139_reset(DeviceState *d)
1211 {
1212     RTL8139State *s = RTL8139(d);
1213     int i;
1214 
1215     /* restore MAC address */
1216     memcpy(s->phys, s->conf.macaddr.a, 6);
1217     qemu_format_nic_info_str(qemu_get_queue(s->nic), s->phys);
1218 
1219     /* reset interrupt mask */
1220     s->IntrStatus = 0;
1221     s->IntrMask = 0;
1222 
1223     rtl8139_update_irq(s);
1224 
1225     /* mark all status registers as owned by host */
1226     for (i = 0; i < 4; ++i)
1227     {
1228         s->TxStatus[i] = TxHostOwns;
1229     }
1230 
1231     s->currTxDesc = 0;
1232     s->currCPlusRxDesc = 0;
1233     s->currCPlusTxDesc = 0;
1234 
1235     s->RxRingAddrLO = 0;
1236     s->RxRingAddrHI = 0;
1237 
1238     s->RxBuf = 0;
1239 
1240     rtl8139_reset_rxring(s, 8192);
1241 
1242     /* ACK the reset */
1243     s->TxConfig = 0;
1244 
1245 #if 0
1246 //    s->TxConfig |= HW_REVID(1, 0, 0, 0, 0, 0, 0); // RTL-8139  HasHltClk
1247     s->clock_enabled = 0;
1248 #else
1249     s->TxConfig |= HW_REVID(1, 1, 1, 0, 1, 1, 0); // RTL-8139C+ HasLWake
1250     s->clock_enabled = 1;
1251 #endif
1252 
1253     s->bChipCmdState = CmdReset; /* RxBufEmpty bit is calculated on read from ChipCmd */;
1254 
1255     /* set initial state data */
1256     s->Config0 = 0x0; /* No boot ROM */
1257     s->Config1 = 0xC; /* IO mapped and MEM mapped registers available */
1258     s->Config3 = 0x1; /* fast back-to-back compatible */
1259     s->Config5 = 0x0;
1260 
1261     s->CSCR = CSCR_F_LINK_100 | CSCR_HEART_BIT | CSCR_LD;
1262 
1263     s->CpCmd   = 0x0; /* reset C+ mode */
1264     s->cplus_enabled = 0;
1265 
1266 
1267 //    s->BasicModeCtrl = 0x3100; // 100Mbps, full duplex, autonegotiation
1268 //    s->BasicModeCtrl = 0x2100; // 100Mbps, full duplex
1269     s->BasicModeCtrl = 0x1000; // autonegotiation
1270 
1271     s->BasicModeStatus  = 0x7809;
1272     //s->BasicModeStatus |= 0x0040; /* UTP medium */
1273     s->BasicModeStatus |= 0x0020; /* autonegotiation completed */
1274     /* preserve link state */
1275     s->BasicModeStatus |= qemu_get_queue(s->nic)->link_down ? 0 : 0x04;
1276 
1277     s->NWayAdvert    = 0x05e1; /* all modes, full duplex */
1278     s->NWayLPAR      = 0x05e1; /* all modes, full duplex */
1279     s->NWayExpansion = 0x0001; /* autonegotiation supported */
1280 
1281     /* also reset timer and disable timer interrupt */
1282     s->TCTR = 0;
1283     s->TimerInt = 0;
1284     s->TCTR_base = 0;
1285 
1286     /* reset tally counters */
1287     RTL8139TallyCounters_clear(&s->tally_counters);
1288 }
1289 
1290 static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters)
1291 {
1292     counters->TxOk = 0;
1293     counters->RxOk = 0;
1294     counters->TxERR = 0;
1295     counters->RxERR = 0;
1296     counters->MissPkt = 0;
1297     counters->FAE = 0;
1298     counters->Tx1Col = 0;
1299     counters->TxMCol = 0;
1300     counters->RxOkPhy = 0;
1301     counters->RxOkBrd = 0;
1302     counters->RxOkMul = 0;
1303     counters->TxAbt = 0;
1304     counters->TxUndrn = 0;
1305 }
1306 
1307 static void RTL8139TallyCounters_dma_write(RTL8139State *s, dma_addr_t tc_addr)
1308 {
1309     PCIDevice *d = PCI_DEVICE(s);
1310     RTL8139TallyCounters *tally_counters = &s->tally_counters;
1311     uint16_t val16;
1312     uint32_t val32;
1313     uint64_t val64;
1314 
1315     val64 = cpu_to_le64(tally_counters->TxOk);
1316     pci_dma_write(d, tc_addr + 0,     (uint8_t *)&val64, 8);
1317 
1318     val64 = cpu_to_le64(tally_counters->RxOk);
1319     pci_dma_write(d, tc_addr + 8,     (uint8_t *)&val64, 8);
1320 
1321     val64 = cpu_to_le64(tally_counters->TxERR);
1322     pci_dma_write(d, tc_addr + 16,    (uint8_t *)&val64, 8);
1323 
1324     val32 = cpu_to_le32(tally_counters->RxERR);
1325     pci_dma_write(d, tc_addr + 24,    (uint8_t *)&val32, 4);
1326 
1327     val16 = cpu_to_le16(tally_counters->MissPkt);
1328     pci_dma_write(d, tc_addr + 28,    (uint8_t *)&val16, 2);
1329 
1330     val16 = cpu_to_le16(tally_counters->FAE);
1331     pci_dma_write(d, tc_addr + 30,    (uint8_t *)&val16, 2);
1332 
1333     val32 = cpu_to_le32(tally_counters->Tx1Col);
1334     pci_dma_write(d, tc_addr + 32,    (uint8_t *)&val32, 4);
1335 
1336     val32 = cpu_to_le32(tally_counters->TxMCol);
1337     pci_dma_write(d, tc_addr + 36,    (uint8_t *)&val32, 4);
1338 
1339     val64 = cpu_to_le64(tally_counters->RxOkPhy);
1340     pci_dma_write(d, tc_addr + 40,    (uint8_t *)&val64, 8);
1341 
1342     val64 = cpu_to_le64(tally_counters->RxOkBrd);
1343     pci_dma_write(d, tc_addr + 48,    (uint8_t *)&val64, 8);
1344 
1345     val32 = cpu_to_le32(tally_counters->RxOkMul);
1346     pci_dma_write(d, tc_addr + 56,    (uint8_t *)&val32, 4);
1347 
1348     val16 = cpu_to_le16(tally_counters->TxAbt);
1349     pci_dma_write(d, tc_addr + 60,    (uint8_t *)&val16, 2);
1350 
1351     val16 = cpu_to_le16(tally_counters->TxUndrn);
1352     pci_dma_write(d, tc_addr + 62,    (uint8_t *)&val16, 2);
1353 }
1354 
1355 /* Loads values of tally counters from VM state file */
1356 
1357 static const VMStateDescription vmstate_tally_counters = {
1358     .name = "tally_counters",
1359     .version_id = 1,
1360     .minimum_version_id = 1,
1361     .minimum_version_id_old = 1,
1362     .fields      = (VMStateField []) {
1363         VMSTATE_UINT64(TxOk, RTL8139TallyCounters),
1364         VMSTATE_UINT64(RxOk, RTL8139TallyCounters),
1365         VMSTATE_UINT64(TxERR, RTL8139TallyCounters),
1366         VMSTATE_UINT32(RxERR, RTL8139TallyCounters),
1367         VMSTATE_UINT16(MissPkt, RTL8139TallyCounters),
1368         VMSTATE_UINT16(FAE, RTL8139TallyCounters),
1369         VMSTATE_UINT32(Tx1Col, RTL8139TallyCounters),
1370         VMSTATE_UINT32(TxMCol, RTL8139TallyCounters),
1371         VMSTATE_UINT64(RxOkPhy, RTL8139TallyCounters),
1372         VMSTATE_UINT64(RxOkBrd, RTL8139TallyCounters),
1373         VMSTATE_UINT16(TxAbt, RTL8139TallyCounters),
1374         VMSTATE_UINT16(TxUndrn, RTL8139TallyCounters),
1375         VMSTATE_END_OF_LIST()
1376     }
1377 };
1378 
1379 static void rtl8139_ChipCmd_write(RTL8139State *s, uint32_t val)
1380 {
1381     DeviceState *d = DEVICE(s);
1382 
1383     val &= 0xff;
1384 
1385     DPRINTF("ChipCmd write val=0x%08x\n", val);
1386 
1387     if (val & CmdReset)
1388     {
1389         DPRINTF("ChipCmd reset\n");
1390         rtl8139_reset(d);
1391     }
1392     if (val & CmdRxEnb)
1393     {
1394         DPRINTF("ChipCmd enable receiver\n");
1395 
1396         s->currCPlusRxDesc = 0;
1397     }
1398     if (val & CmdTxEnb)
1399     {
1400         DPRINTF("ChipCmd enable transmitter\n");
1401 
1402         s->currCPlusTxDesc = 0;
1403     }
1404 
1405     /* mask unwritable bits */
1406     val = SET_MASKED(val, 0xe3, s->bChipCmdState);
1407 
1408     /* Deassert reset pin before next read */
1409     val &= ~CmdReset;
1410 
1411     s->bChipCmdState = val;
1412 }
1413 
1414 static int rtl8139_RxBufferEmpty(RTL8139State *s)
1415 {
1416     int unread = MOD2(s->RxBufferSize + s->RxBufAddr - s->RxBufPtr, s->RxBufferSize);
1417 
1418     if (unread != 0)
1419     {
1420         DPRINTF("receiver buffer data available 0x%04x\n", unread);
1421         return 0;
1422     }
1423 
1424     DPRINTF("receiver buffer is empty\n");
1425 
1426     return 1;
1427 }
1428 
1429 static uint32_t rtl8139_ChipCmd_read(RTL8139State *s)
1430 {
1431     uint32_t ret = s->bChipCmdState;
1432 
1433     if (rtl8139_RxBufferEmpty(s))
1434         ret |= RxBufEmpty;
1435 
1436     DPRINTF("ChipCmd read val=0x%04x\n", ret);
1437 
1438     return ret;
1439 }
1440 
1441 static void rtl8139_CpCmd_write(RTL8139State *s, uint32_t val)
1442 {
1443     val &= 0xffff;
1444 
1445     DPRINTF("C+ command register write(w) val=0x%04x\n", val);
1446 
1447     s->cplus_enabled = 1;
1448 
1449     /* mask unwritable bits */
1450     val = SET_MASKED(val, 0xff84, s->CpCmd);
1451 
1452     s->CpCmd = val;
1453 }
1454 
1455 static uint32_t rtl8139_CpCmd_read(RTL8139State *s)
1456 {
1457     uint32_t ret = s->CpCmd;
1458 
1459     DPRINTF("C+ command register read(w) val=0x%04x\n", ret);
1460 
1461     return ret;
1462 }
1463 
1464 static void rtl8139_IntrMitigate_write(RTL8139State *s, uint32_t val)
1465 {
1466     DPRINTF("C+ IntrMitigate register write(w) val=0x%04x\n", val);
1467 }
1468 
1469 static uint32_t rtl8139_IntrMitigate_read(RTL8139State *s)
1470 {
1471     uint32_t ret = 0;
1472 
1473     DPRINTF("C+ IntrMitigate register read(w) val=0x%04x\n", ret);
1474 
1475     return ret;
1476 }
1477 
1478 static int rtl8139_config_writable(RTL8139State *s)
1479 {
1480     if ((s->Cfg9346 & Chip9346_op_mask) == Cfg9346_ConfigWrite)
1481     {
1482         return 1;
1483     }
1484 
1485     DPRINTF("Configuration registers are write-protected\n");
1486 
1487     return 0;
1488 }
1489 
1490 static void rtl8139_BasicModeCtrl_write(RTL8139State *s, uint32_t val)
1491 {
1492     val &= 0xffff;
1493 
1494     DPRINTF("BasicModeCtrl register write(w) val=0x%04x\n", val);
1495 
1496     /* mask unwritable bits */
1497     uint32_t mask = 0x4cff;
1498 
1499     if (1 || !rtl8139_config_writable(s))
1500     {
1501         /* Speed setting and autonegotiation enable bits are read-only */
1502         mask |= 0x3000;
1503         /* Duplex mode setting is read-only */
1504         mask |= 0x0100;
1505     }
1506 
1507     val = SET_MASKED(val, mask, s->BasicModeCtrl);
1508 
1509     s->BasicModeCtrl = val;
1510 }
1511 
1512 static uint32_t rtl8139_BasicModeCtrl_read(RTL8139State *s)
1513 {
1514     uint32_t ret = s->BasicModeCtrl;
1515 
1516     DPRINTF("BasicModeCtrl register read(w) val=0x%04x\n", ret);
1517 
1518     return ret;
1519 }
1520 
1521 static void rtl8139_BasicModeStatus_write(RTL8139State *s, uint32_t val)
1522 {
1523     val &= 0xffff;
1524 
1525     DPRINTF("BasicModeStatus register write(w) val=0x%04x\n", val);
1526 
1527     /* mask unwritable bits */
1528     val = SET_MASKED(val, 0xff3f, s->BasicModeStatus);
1529 
1530     s->BasicModeStatus = val;
1531 }
1532 
1533 static uint32_t rtl8139_BasicModeStatus_read(RTL8139State *s)
1534 {
1535     uint32_t ret = s->BasicModeStatus;
1536 
1537     DPRINTF("BasicModeStatus register read(w) val=0x%04x\n", ret);
1538 
1539     return ret;
1540 }
1541 
1542 static void rtl8139_Cfg9346_write(RTL8139State *s, uint32_t val)
1543 {
1544     DeviceState *d = DEVICE(s);
1545 
1546     val &= 0xff;
1547 
1548     DPRINTF("Cfg9346 write val=0x%02x\n", val);
1549 
1550     /* mask unwritable bits */
1551     val = SET_MASKED(val, 0x31, s->Cfg9346);
1552 
1553     uint32_t opmode = val & 0xc0;
1554     uint32_t eeprom_val = val & 0xf;
1555 
1556     if (opmode == 0x80) {
1557         /* eeprom access */
1558         int eecs = (eeprom_val & 0x08)?1:0;
1559         int eesk = (eeprom_val & 0x04)?1:0;
1560         int eedi = (eeprom_val & 0x02)?1:0;
1561         prom9346_set_wire(s, eecs, eesk, eedi);
1562     } else if (opmode == 0x40) {
1563         /* Reset.  */
1564         val = 0;
1565         rtl8139_reset(d);
1566     }
1567 
1568     s->Cfg9346 = val;
1569 }
1570 
1571 static uint32_t rtl8139_Cfg9346_read(RTL8139State *s)
1572 {
1573     uint32_t ret = s->Cfg9346;
1574 
1575     uint32_t opmode = ret & 0xc0;
1576 
1577     if (opmode == 0x80)
1578     {
1579         /* eeprom access */
1580         int eedo = prom9346_get_wire(s);
1581         if (eedo)
1582         {
1583             ret |=  0x01;
1584         }
1585         else
1586         {
1587             ret &= ~0x01;
1588         }
1589     }
1590 
1591     DPRINTF("Cfg9346 read val=0x%02x\n", ret);
1592 
1593     return ret;
1594 }
1595 
1596 static void rtl8139_Config0_write(RTL8139State *s, uint32_t val)
1597 {
1598     val &= 0xff;
1599 
1600     DPRINTF("Config0 write val=0x%02x\n", val);
1601 
1602     if (!rtl8139_config_writable(s)) {
1603         return;
1604     }
1605 
1606     /* mask unwritable bits */
1607     val = SET_MASKED(val, 0xf8, s->Config0);
1608 
1609     s->Config0 = val;
1610 }
1611 
1612 static uint32_t rtl8139_Config0_read(RTL8139State *s)
1613 {
1614     uint32_t ret = s->Config0;
1615 
1616     DPRINTF("Config0 read val=0x%02x\n", ret);
1617 
1618     return ret;
1619 }
1620 
1621 static void rtl8139_Config1_write(RTL8139State *s, uint32_t val)
1622 {
1623     val &= 0xff;
1624 
1625     DPRINTF("Config1 write val=0x%02x\n", val);
1626 
1627     if (!rtl8139_config_writable(s)) {
1628         return;
1629     }
1630 
1631     /* mask unwritable bits */
1632     val = SET_MASKED(val, 0xC, s->Config1);
1633 
1634     s->Config1 = val;
1635 }
1636 
1637 static uint32_t rtl8139_Config1_read(RTL8139State *s)
1638 {
1639     uint32_t ret = s->Config1;
1640 
1641     DPRINTF("Config1 read val=0x%02x\n", ret);
1642 
1643     return ret;
1644 }
1645 
1646 static void rtl8139_Config3_write(RTL8139State *s, uint32_t val)
1647 {
1648     val &= 0xff;
1649 
1650     DPRINTF("Config3 write val=0x%02x\n", val);
1651 
1652     if (!rtl8139_config_writable(s)) {
1653         return;
1654     }
1655 
1656     /* mask unwritable bits */
1657     val = SET_MASKED(val, 0x8F, s->Config3);
1658 
1659     s->Config3 = val;
1660 }
1661 
1662 static uint32_t rtl8139_Config3_read(RTL8139State *s)
1663 {
1664     uint32_t ret = s->Config3;
1665 
1666     DPRINTF("Config3 read val=0x%02x\n", ret);
1667 
1668     return ret;
1669 }
1670 
1671 static void rtl8139_Config4_write(RTL8139State *s, uint32_t val)
1672 {
1673     val &= 0xff;
1674 
1675     DPRINTF("Config4 write val=0x%02x\n", val);
1676 
1677     if (!rtl8139_config_writable(s)) {
1678         return;
1679     }
1680 
1681     /* mask unwritable bits */
1682     val = SET_MASKED(val, 0x0a, s->Config4);
1683 
1684     s->Config4 = val;
1685 }
1686 
1687 static uint32_t rtl8139_Config4_read(RTL8139State *s)
1688 {
1689     uint32_t ret = s->Config4;
1690 
1691     DPRINTF("Config4 read val=0x%02x\n", ret);
1692 
1693     return ret;
1694 }
1695 
1696 static void rtl8139_Config5_write(RTL8139State *s, uint32_t val)
1697 {
1698     val &= 0xff;
1699 
1700     DPRINTF("Config5 write val=0x%02x\n", val);
1701 
1702     /* mask unwritable bits */
1703     val = SET_MASKED(val, 0x80, s->Config5);
1704 
1705     s->Config5 = val;
1706 }
1707 
1708 static uint32_t rtl8139_Config5_read(RTL8139State *s)
1709 {
1710     uint32_t ret = s->Config5;
1711 
1712     DPRINTF("Config5 read val=0x%02x\n", ret);
1713 
1714     return ret;
1715 }
1716 
1717 static void rtl8139_TxConfig_write(RTL8139State *s, uint32_t val)
1718 {
1719     if (!rtl8139_transmitter_enabled(s))
1720     {
1721         DPRINTF("transmitter disabled; no TxConfig write val=0x%08x\n", val);
1722         return;
1723     }
1724 
1725     DPRINTF("TxConfig write val=0x%08x\n", val);
1726 
1727     val = SET_MASKED(val, TxVersionMask | 0x8070f80f, s->TxConfig);
1728 
1729     s->TxConfig = val;
1730 }
1731 
1732 static void rtl8139_TxConfig_writeb(RTL8139State *s, uint32_t val)
1733 {
1734     DPRINTF("RTL8139C TxConfig via write(b) val=0x%02x\n", val);
1735 
1736     uint32_t tc = s->TxConfig;
1737     tc &= 0xFFFFFF00;
1738     tc |= (val & 0x000000FF);
1739     rtl8139_TxConfig_write(s, tc);
1740 }
1741 
1742 static uint32_t rtl8139_TxConfig_read(RTL8139State *s)
1743 {
1744     uint32_t ret = s->TxConfig;
1745 
1746     DPRINTF("TxConfig read val=0x%04x\n", ret);
1747 
1748     return ret;
1749 }
1750 
1751 static void rtl8139_RxConfig_write(RTL8139State *s, uint32_t val)
1752 {
1753     DPRINTF("RxConfig write val=0x%08x\n", val);
1754 
1755     /* mask unwritable bits */
1756     val = SET_MASKED(val, 0xf0fc0040, s->RxConfig);
1757 
1758     s->RxConfig = val;
1759 
1760     /* reset buffer size and read/write pointers */
1761     rtl8139_reset_rxring(s, 8192 << ((s->RxConfig >> 11) & 0x3));
1762 
1763     DPRINTF("RxConfig write reset buffer size to %d\n", s->RxBufferSize);
1764 }
1765 
1766 static uint32_t rtl8139_RxConfig_read(RTL8139State *s)
1767 {
1768     uint32_t ret = s->RxConfig;
1769 
1770     DPRINTF("RxConfig read val=0x%08x\n", ret);
1771 
1772     return ret;
1773 }
1774 
1775 static void rtl8139_transfer_frame(RTL8139State *s, uint8_t *buf, int size,
1776     int do_interrupt, const uint8_t *dot1q_buf)
1777 {
1778     struct iovec *iov = NULL;
1779 
1780     if (!size)
1781     {
1782         DPRINTF("+++ empty ethernet frame\n");
1783         return;
1784     }
1785 
1786     if (dot1q_buf && size >= ETHER_ADDR_LEN * 2) {
1787         iov = (struct iovec[3]) {
1788             { .iov_base = buf, .iov_len = ETHER_ADDR_LEN * 2 },
1789             { .iov_base = (void *) dot1q_buf, .iov_len = VLAN_HLEN },
1790             { .iov_base = buf + ETHER_ADDR_LEN * 2,
1791                 .iov_len = size - ETHER_ADDR_LEN * 2 },
1792         };
1793     }
1794 
1795     if (TxLoopBack == (s->TxConfig & TxLoopBack))
1796     {
1797         size_t buf2_size;
1798         uint8_t *buf2;
1799 
1800         if (iov) {
1801             buf2_size = iov_size(iov, 3);
1802             buf2 = g_malloc(buf2_size);
1803             iov_to_buf(iov, 3, 0, buf2, buf2_size);
1804             buf = buf2;
1805         }
1806 
1807         DPRINTF("+++ transmit loopback mode\n");
1808         rtl8139_do_receive(qemu_get_queue(s->nic), buf, size, do_interrupt);
1809 
1810         if (iov) {
1811             g_free(buf2);
1812         }
1813     }
1814     else
1815     {
1816         if (iov) {
1817             qemu_sendv_packet(qemu_get_queue(s->nic), iov, 3);
1818         } else {
1819             qemu_send_packet(qemu_get_queue(s->nic), buf, size);
1820         }
1821     }
1822 }
1823 
1824 static int rtl8139_transmit_one(RTL8139State *s, int descriptor)
1825 {
1826     if (!rtl8139_transmitter_enabled(s))
1827     {
1828         DPRINTF("+++ cannot transmit from descriptor %d: transmitter "
1829             "disabled\n", descriptor);
1830         return 0;
1831     }
1832 
1833     if (s->TxStatus[descriptor] & TxHostOwns)
1834     {
1835         DPRINTF("+++ cannot transmit from descriptor %d: owned by host "
1836             "(%08x)\n", descriptor, s->TxStatus[descriptor]);
1837         return 0;
1838     }
1839 
1840     DPRINTF("+++ transmitting from descriptor %d\n", descriptor);
1841 
1842     PCIDevice *d = PCI_DEVICE(s);
1843     int txsize = s->TxStatus[descriptor] & 0x1fff;
1844     uint8_t txbuffer[0x2000];
1845 
1846     DPRINTF("+++ transmit reading %d bytes from host memory at 0x%08x\n",
1847         txsize, s->TxAddr[descriptor]);
1848 
1849     pci_dma_read(d, s->TxAddr[descriptor], txbuffer, txsize);
1850 
1851     /* Mark descriptor as transferred */
1852     s->TxStatus[descriptor] |= TxHostOwns;
1853     s->TxStatus[descriptor] |= TxStatOK;
1854 
1855     rtl8139_transfer_frame(s, txbuffer, txsize, 0, NULL);
1856 
1857     DPRINTF("+++ transmitted %d bytes from descriptor %d\n", txsize,
1858         descriptor);
1859 
1860     /* update interrupt */
1861     s->IntrStatus |= TxOK;
1862     rtl8139_update_irq(s);
1863 
1864     return 1;
1865 }
1866 
1867 /* structures and macros for task offloading */
1868 typedef struct ip_header
1869 {
1870     uint8_t  ip_ver_len;    /* version and header length */
1871     uint8_t  ip_tos;        /* type of service */
1872     uint16_t ip_len;        /* total length */
1873     uint16_t ip_id;         /* identification */
1874     uint16_t ip_off;        /* fragment offset field */
1875     uint8_t  ip_ttl;        /* time to live */
1876     uint8_t  ip_p;          /* protocol */
1877     uint16_t ip_sum;        /* checksum */
1878     uint32_t ip_src,ip_dst; /* source and dest address */
1879 } ip_header;
1880 
1881 #define IP_HEADER_VERSION_4 4
1882 #define IP_HEADER_VERSION(ip) ((ip->ip_ver_len >> 4)&0xf)
1883 #define IP_HEADER_LENGTH(ip) (((ip->ip_ver_len)&0xf) << 2)
1884 
1885 typedef struct tcp_header
1886 {
1887     uint16_t th_sport;		/* source port */
1888     uint16_t th_dport;		/* destination port */
1889     uint32_t th_seq;			/* sequence number */
1890     uint32_t th_ack;			/* acknowledgement number */
1891     uint16_t th_offset_flags; /* data offset, reserved 6 bits, TCP protocol flags */
1892     uint16_t th_win;			/* window */
1893     uint16_t th_sum;			/* checksum */
1894     uint16_t th_urp;			/* urgent pointer */
1895 } tcp_header;
1896 
1897 typedef struct udp_header
1898 {
1899     uint16_t uh_sport; /* source port */
1900     uint16_t uh_dport; /* destination port */
1901     uint16_t uh_ulen;  /* udp length */
1902     uint16_t uh_sum;   /* udp checksum */
1903 } udp_header;
1904 
1905 typedef struct ip_pseudo_header
1906 {
1907     uint32_t ip_src;
1908     uint32_t ip_dst;
1909     uint8_t  zeros;
1910     uint8_t  ip_proto;
1911     uint16_t ip_payload;
1912 } ip_pseudo_header;
1913 
1914 #define IP_PROTO_TCP 6
1915 #define IP_PROTO_UDP 17
1916 
1917 #define TCP_HEADER_DATA_OFFSET(tcp) (((be16_to_cpu(tcp->th_offset_flags) >> 12)&0xf) << 2)
1918 #define TCP_FLAGS_ONLY(flags) ((flags)&0x3f)
1919 #define TCP_HEADER_FLAGS(tcp) TCP_FLAGS_ONLY(be16_to_cpu(tcp->th_offset_flags))
1920 
1921 #define TCP_HEADER_CLEAR_FLAGS(tcp, off) ((tcp)->th_offset_flags &= cpu_to_be16(~TCP_FLAGS_ONLY(off)))
1922 
1923 #define TCP_FLAG_FIN  0x01
1924 #define TCP_FLAG_PUSH 0x08
1925 
1926 /* produces ones' complement sum of data */
1927 static uint16_t ones_complement_sum(uint8_t *data, size_t len)
1928 {
1929     uint32_t result = 0;
1930 
1931     for (; len > 1; data+=2, len-=2)
1932     {
1933         result += *(uint16_t*)data;
1934     }
1935 
1936     /* add the remainder byte */
1937     if (len)
1938     {
1939         uint8_t odd[2] = {*data, 0};
1940         result += *(uint16_t*)odd;
1941     }
1942 
1943     while (result>>16)
1944         result = (result & 0xffff) + (result >> 16);
1945 
1946     return result;
1947 }
1948 
1949 static uint16_t ip_checksum(void *data, size_t len)
1950 {
1951     return ~ones_complement_sum((uint8_t*)data, len);
1952 }
1953 
1954 static int rtl8139_cplus_transmit_one(RTL8139State *s)
1955 {
1956     if (!rtl8139_transmitter_enabled(s))
1957     {
1958         DPRINTF("+++ C+ mode: transmitter disabled\n");
1959         return 0;
1960     }
1961 
1962     if (!rtl8139_cp_transmitter_enabled(s))
1963     {
1964         DPRINTF("+++ C+ mode: C+ transmitter disabled\n");
1965         return 0 ;
1966     }
1967 
1968     PCIDevice *d = PCI_DEVICE(s);
1969     int descriptor = s->currCPlusTxDesc;
1970 
1971     dma_addr_t cplus_tx_ring_desc = rtl8139_addr64(s->TxAddr[0], s->TxAddr[1]);
1972 
1973     /* Normal priority ring */
1974     cplus_tx_ring_desc += 16 * descriptor;
1975 
1976     DPRINTF("+++ C+ mode reading TX descriptor %d from host memory at "
1977         "%08x %08x = 0x"DMA_ADDR_FMT"\n", descriptor, s->TxAddr[1],
1978         s->TxAddr[0], cplus_tx_ring_desc);
1979 
1980     uint32_t val, txdw0,txdw1,txbufLO,txbufHI;
1981 
1982     pci_dma_read(d, cplus_tx_ring_desc,    (uint8_t *)&val, 4);
1983     txdw0 = le32_to_cpu(val);
1984     pci_dma_read(d, cplus_tx_ring_desc+4,  (uint8_t *)&val, 4);
1985     txdw1 = le32_to_cpu(val);
1986     pci_dma_read(d, cplus_tx_ring_desc+8,  (uint8_t *)&val, 4);
1987     txbufLO = le32_to_cpu(val);
1988     pci_dma_read(d, cplus_tx_ring_desc+12, (uint8_t *)&val, 4);
1989     txbufHI = le32_to_cpu(val);
1990 
1991     DPRINTF("+++ C+ mode TX descriptor %d %08x %08x %08x %08x\n", descriptor,
1992         txdw0, txdw1, txbufLO, txbufHI);
1993 
1994 /* w0 ownership flag */
1995 #define CP_TX_OWN (1<<31)
1996 /* w0 end of ring flag */
1997 #define CP_TX_EOR (1<<30)
1998 /* first segment of received packet flag */
1999 #define CP_TX_FS (1<<29)
2000 /* last segment of received packet flag */
2001 #define CP_TX_LS (1<<28)
2002 /* large send packet flag */
2003 #define CP_TX_LGSEN (1<<27)
2004 /* large send MSS mask, bits 16...25 */
2005 #define CP_TC_LGSEN_MSS_MASK ((1 << 12) - 1)
2006 
2007 /* IP checksum offload flag */
2008 #define CP_TX_IPCS (1<<18)
2009 /* UDP checksum offload flag */
2010 #define CP_TX_UDPCS (1<<17)
2011 /* TCP checksum offload flag */
2012 #define CP_TX_TCPCS (1<<16)
2013 
2014 /* w0 bits 0...15 : buffer size */
2015 #define CP_TX_BUFFER_SIZE (1<<16)
2016 #define CP_TX_BUFFER_SIZE_MASK (CP_TX_BUFFER_SIZE - 1)
2017 /* w1 add tag flag */
2018 #define CP_TX_TAGC (1<<17)
2019 /* w1 bits 0...15 : VLAN tag (big endian) */
2020 #define CP_TX_VLAN_TAG_MASK ((1<<16) - 1)
2021 /* w2 low  32bit of Rx buffer ptr */
2022 /* w3 high 32bit of Rx buffer ptr */
2023 
2024 /* set after transmission */
2025 /* FIFO underrun flag */
2026 #define CP_TX_STATUS_UNF (1<<25)
2027 /* transmit error summary flag, valid if set any of three below */
2028 #define CP_TX_STATUS_TES (1<<23)
2029 /* out-of-window collision flag */
2030 #define CP_TX_STATUS_OWC (1<<22)
2031 /* link failure flag */
2032 #define CP_TX_STATUS_LNKF (1<<21)
2033 /* excessive collisions flag */
2034 #define CP_TX_STATUS_EXC (1<<20)
2035 
2036     if (!(txdw0 & CP_TX_OWN))
2037     {
2038         DPRINTF("C+ Tx mode : descriptor %d is owned by host\n", descriptor);
2039         return 0 ;
2040     }
2041 
2042     DPRINTF("+++ C+ Tx mode : transmitting from descriptor %d\n", descriptor);
2043 
2044     if (txdw0 & CP_TX_FS)
2045     {
2046         DPRINTF("+++ C+ Tx mode : descriptor %d is first segment "
2047             "descriptor\n", descriptor);
2048 
2049         /* reset internal buffer offset */
2050         s->cplus_txbuffer_offset = 0;
2051     }
2052 
2053     int txsize = txdw0 & CP_TX_BUFFER_SIZE_MASK;
2054     dma_addr_t tx_addr = rtl8139_addr64(txbufLO, txbufHI);
2055 
2056     /* make sure we have enough space to assemble the packet */
2057     if (!s->cplus_txbuffer)
2058     {
2059         s->cplus_txbuffer_len = CP_TX_BUFFER_SIZE;
2060         s->cplus_txbuffer = g_malloc(s->cplus_txbuffer_len);
2061         s->cplus_txbuffer_offset = 0;
2062 
2063         DPRINTF("+++ C+ mode transmission buffer allocated space %d\n",
2064             s->cplus_txbuffer_len);
2065     }
2066 
2067     if (s->cplus_txbuffer_offset + txsize >= s->cplus_txbuffer_len)
2068     {
2069         /* The spec didn't tell the maximum size, stick to CP_TX_BUFFER_SIZE */
2070         txsize = s->cplus_txbuffer_len - s->cplus_txbuffer_offset;
2071         DPRINTF("+++ C+ mode transmission buffer overrun, truncated descriptor"
2072                 "length to %d\n", txsize);
2073     }
2074 
2075     if (!s->cplus_txbuffer)
2076     {
2077         /* out of memory */
2078 
2079         DPRINTF("+++ C+ mode transmiter failed to reallocate %d bytes\n",
2080             s->cplus_txbuffer_len);
2081 
2082         /* update tally counter */
2083         ++s->tally_counters.TxERR;
2084         ++s->tally_counters.TxAbt;
2085 
2086         return 0;
2087     }
2088 
2089     /* append more data to the packet */
2090 
2091     DPRINTF("+++ C+ mode transmit reading %d bytes from host memory at "
2092             DMA_ADDR_FMT" to offset %d\n", txsize, tx_addr,
2093             s->cplus_txbuffer_offset);
2094 
2095     pci_dma_read(d, tx_addr,
2096                  s->cplus_txbuffer + s->cplus_txbuffer_offset, txsize);
2097     s->cplus_txbuffer_offset += txsize;
2098 
2099     /* seek to next Rx descriptor */
2100     if (txdw0 & CP_TX_EOR)
2101     {
2102         s->currCPlusTxDesc = 0;
2103     }
2104     else
2105     {
2106         ++s->currCPlusTxDesc;
2107         if (s->currCPlusTxDesc >= 64)
2108             s->currCPlusTxDesc = 0;
2109     }
2110 
2111     /* transfer ownership to target */
2112     txdw0 &= ~CP_RX_OWN;
2113 
2114     /* reset error indicator bits */
2115     txdw0 &= ~CP_TX_STATUS_UNF;
2116     txdw0 &= ~CP_TX_STATUS_TES;
2117     txdw0 &= ~CP_TX_STATUS_OWC;
2118     txdw0 &= ~CP_TX_STATUS_LNKF;
2119     txdw0 &= ~CP_TX_STATUS_EXC;
2120 
2121     /* update ring data */
2122     val = cpu_to_le32(txdw0);
2123     pci_dma_write(d, cplus_tx_ring_desc, (uint8_t *)&val, 4);
2124 
2125     /* Now decide if descriptor being processed is holding the last segment of packet */
2126     if (txdw0 & CP_TX_LS)
2127     {
2128         uint8_t dot1q_buffer_space[VLAN_HLEN];
2129         uint16_t *dot1q_buffer;
2130 
2131         DPRINTF("+++ C+ Tx mode : descriptor %d is last segment descriptor\n",
2132             descriptor);
2133 
2134         /* can transfer fully assembled packet */
2135 
2136         uint8_t *saved_buffer  = s->cplus_txbuffer;
2137         int      saved_size    = s->cplus_txbuffer_offset;
2138         int      saved_buffer_len = s->cplus_txbuffer_len;
2139 
2140         /* create vlan tag */
2141         if (txdw1 & CP_TX_TAGC) {
2142             /* the vlan tag is in BE byte order in the descriptor
2143              * BE + le_to_cpu() + ~swap()~ = cpu */
2144             DPRINTF("+++ C+ Tx mode : inserting vlan tag with ""tci: %u\n",
2145                 bswap16(txdw1 & CP_TX_VLAN_TAG_MASK));
2146 
2147             dot1q_buffer = (uint16_t *) dot1q_buffer_space;
2148             dot1q_buffer[0] = cpu_to_be16(ETH_P_8021Q);
2149             /* BE + le_to_cpu() + ~cpu_to_le()~ = BE */
2150             dot1q_buffer[1] = cpu_to_le16(txdw1 & CP_TX_VLAN_TAG_MASK);
2151         } else {
2152             dot1q_buffer = NULL;
2153         }
2154 
2155         /* reset the card space to protect from recursive call */
2156         s->cplus_txbuffer = NULL;
2157         s->cplus_txbuffer_offset = 0;
2158         s->cplus_txbuffer_len = 0;
2159 
2160         if (txdw0 & (CP_TX_IPCS | CP_TX_UDPCS | CP_TX_TCPCS | CP_TX_LGSEN))
2161         {
2162             DPRINTF("+++ C+ mode offloaded task checksum\n");
2163 
2164             /* ip packet header */
2165             ip_header *ip = NULL;
2166             int hlen = 0;
2167             uint8_t  ip_protocol = 0;
2168             uint16_t ip_data_len = 0;
2169 
2170             uint8_t *eth_payload_data = NULL;
2171             size_t   eth_payload_len  = 0;
2172 
2173             int proto = be16_to_cpu(*(uint16_t *)(saved_buffer + 12));
2174             if (proto == ETH_P_IP)
2175             {
2176                 DPRINTF("+++ C+ mode has IP packet\n");
2177 
2178                 /* not aligned */
2179                 eth_payload_data = saved_buffer + ETH_HLEN;
2180                 eth_payload_len  = saved_size   - ETH_HLEN;
2181 
2182                 ip = (ip_header*)eth_payload_data;
2183 
2184                 if (IP_HEADER_VERSION(ip) != IP_HEADER_VERSION_4) {
2185                     DPRINTF("+++ C+ mode packet has bad IP version %d "
2186                         "expected %d\n", IP_HEADER_VERSION(ip),
2187                         IP_HEADER_VERSION_4);
2188                     ip = NULL;
2189                 } else {
2190                     hlen = IP_HEADER_LENGTH(ip);
2191                     ip_protocol = ip->ip_p;
2192                     ip_data_len = be16_to_cpu(ip->ip_len) - hlen;
2193                 }
2194             }
2195 
2196             if (ip)
2197             {
2198                 if (txdw0 & CP_TX_IPCS)
2199                 {
2200                     DPRINTF("+++ C+ mode need IP checksum\n");
2201 
2202                     if (hlen<sizeof(ip_header) || hlen>eth_payload_len) {/* min header length */
2203                         /* bad packet header len */
2204                         /* or packet too short */
2205                     }
2206                     else
2207                     {
2208                         ip->ip_sum = 0;
2209                         ip->ip_sum = ip_checksum(ip, hlen);
2210                         DPRINTF("+++ C+ mode IP header len=%d checksum=%04x\n",
2211                             hlen, ip->ip_sum);
2212                     }
2213                 }
2214 
2215                 if ((txdw0 & CP_TX_LGSEN) && ip_protocol == IP_PROTO_TCP)
2216                 {
2217                     int large_send_mss = (txdw0 >> 16) & CP_TC_LGSEN_MSS_MASK;
2218 
2219                     DPRINTF("+++ C+ mode offloaded task TSO MTU=%d IP data %d "
2220                         "frame data %d specified MSS=%d\n", ETH_MTU,
2221                         ip_data_len, saved_size - ETH_HLEN, large_send_mss);
2222 
2223                     int tcp_send_offset = 0;
2224                     int send_count = 0;
2225 
2226                     /* maximum IP header length is 60 bytes */
2227                     uint8_t saved_ip_header[60];
2228 
2229                     /* save IP header template; data area is used in tcp checksum calculation */
2230                     memcpy(saved_ip_header, eth_payload_data, hlen);
2231 
2232                     /* a placeholder for checksum calculation routine in tcp case */
2233                     uint8_t *data_to_checksum     = eth_payload_data + hlen - 12;
2234                     //                    size_t   data_to_checksum_len = eth_payload_len  - hlen + 12;
2235 
2236                     /* pointer to TCP header */
2237                     tcp_header *p_tcp_hdr = (tcp_header*)(eth_payload_data + hlen);
2238 
2239                     int tcp_hlen = TCP_HEADER_DATA_OFFSET(p_tcp_hdr);
2240 
2241                     /* ETH_MTU = ip header len + tcp header len + payload */
2242                     int tcp_data_len = ip_data_len - tcp_hlen;
2243                     int tcp_chunk_size = ETH_MTU - hlen - tcp_hlen;
2244 
2245                     DPRINTF("+++ C+ mode TSO IP data len %d TCP hlen %d TCP "
2246                         "data len %d TCP chunk size %d\n", ip_data_len,
2247                         tcp_hlen, tcp_data_len, tcp_chunk_size);
2248 
2249                     /* note the cycle below overwrites IP header data,
2250                        but restores it from saved_ip_header before sending packet */
2251 
2252                     int is_last_frame = 0;
2253 
2254                     for (tcp_send_offset = 0; tcp_send_offset < tcp_data_len; tcp_send_offset += tcp_chunk_size)
2255                     {
2256                         uint16_t chunk_size = tcp_chunk_size;
2257 
2258                         /* check if this is the last frame */
2259                         if (tcp_send_offset + tcp_chunk_size >= tcp_data_len)
2260                         {
2261                             is_last_frame = 1;
2262                             chunk_size = tcp_data_len - tcp_send_offset;
2263                         }
2264 
2265                         DPRINTF("+++ C+ mode TSO TCP seqno %08x\n",
2266                             be32_to_cpu(p_tcp_hdr->th_seq));
2267 
2268                         /* add 4 TCP pseudoheader fields */
2269                         /* copy IP source and destination fields */
2270                         memcpy(data_to_checksum, saved_ip_header + 12, 8);
2271 
2272                         DPRINTF("+++ C+ mode TSO calculating TCP checksum for "
2273                             "packet with %d bytes data\n", tcp_hlen +
2274                             chunk_size);
2275 
2276                         if (tcp_send_offset)
2277                         {
2278                             memcpy((uint8_t*)p_tcp_hdr + tcp_hlen, (uint8_t*)p_tcp_hdr + tcp_hlen + tcp_send_offset, chunk_size);
2279                         }
2280 
2281                         /* keep PUSH and FIN flags only for the last frame */
2282                         if (!is_last_frame)
2283                         {
2284                             TCP_HEADER_CLEAR_FLAGS(p_tcp_hdr, TCP_FLAG_PUSH|TCP_FLAG_FIN);
2285                         }
2286 
2287                         /* recalculate TCP checksum */
2288                         ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum;
2289                         p_tcpip_hdr->zeros      = 0;
2290                         p_tcpip_hdr->ip_proto   = IP_PROTO_TCP;
2291                         p_tcpip_hdr->ip_payload = cpu_to_be16(tcp_hlen + chunk_size);
2292 
2293                         p_tcp_hdr->th_sum = 0;
2294 
2295                         int tcp_checksum = ip_checksum(data_to_checksum, tcp_hlen + chunk_size + 12);
2296                         DPRINTF("+++ C+ mode TSO TCP checksum %04x\n",
2297                             tcp_checksum);
2298 
2299                         p_tcp_hdr->th_sum = tcp_checksum;
2300 
2301                         /* restore IP header */
2302                         memcpy(eth_payload_data, saved_ip_header, hlen);
2303 
2304                         /* set IP data length and recalculate IP checksum */
2305                         ip->ip_len = cpu_to_be16(hlen + tcp_hlen + chunk_size);
2306 
2307                         /* increment IP id for subsequent frames */
2308                         ip->ip_id = cpu_to_be16(tcp_send_offset/tcp_chunk_size + be16_to_cpu(ip->ip_id));
2309 
2310                         ip->ip_sum = 0;
2311                         ip->ip_sum = ip_checksum(eth_payload_data, hlen);
2312                         DPRINTF("+++ C+ mode TSO IP header len=%d "
2313                             "checksum=%04x\n", hlen, ip->ip_sum);
2314 
2315                         int tso_send_size = ETH_HLEN + hlen + tcp_hlen + chunk_size;
2316                         DPRINTF("+++ C+ mode TSO transferring packet size "
2317                             "%d\n", tso_send_size);
2318                         rtl8139_transfer_frame(s, saved_buffer, tso_send_size,
2319                             0, (uint8_t *) dot1q_buffer);
2320 
2321                         /* add transferred count to TCP sequence number */
2322                         p_tcp_hdr->th_seq = cpu_to_be32(chunk_size + be32_to_cpu(p_tcp_hdr->th_seq));
2323                         ++send_count;
2324                     }
2325 
2326                     /* Stop sending this frame */
2327                     saved_size = 0;
2328                 }
2329                 else if (txdw0 & (CP_TX_TCPCS|CP_TX_UDPCS))
2330                 {
2331                     DPRINTF("+++ C+ mode need TCP or UDP checksum\n");
2332 
2333                     /* maximum IP header length is 60 bytes */
2334                     uint8_t saved_ip_header[60];
2335                     memcpy(saved_ip_header, eth_payload_data, hlen);
2336 
2337                     uint8_t *data_to_checksum     = eth_payload_data + hlen - 12;
2338                     //                    size_t   data_to_checksum_len = eth_payload_len  - hlen + 12;
2339 
2340                     /* add 4 TCP pseudoheader fields */
2341                     /* copy IP source and destination fields */
2342                     memcpy(data_to_checksum, saved_ip_header + 12, 8);
2343 
2344                     if ((txdw0 & CP_TX_TCPCS) && ip_protocol == IP_PROTO_TCP)
2345                     {
2346                         DPRINTF("+++ C+ mode calculating TCP checksum for "
2347                             "packet with %d bytes data\n", ip_data_len);
2348 
2349                         ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum;
2350                         p_tcpip_hdr->zeros      = 0;
2351                         p_tcpip_hdr->ip_proto   = IP_PROTO_TCP;
2352                         p_tcpip_hdr->ip_payload = cpu_to_be16(ip_data_len);
2353 
2354                         tcp_header* p_tcp_hdr = (tcp_header *) (data_to_checksum+12);
2355 
2356                         p_tcp_hdr->th_sum = 0;
2357 
2358                         int tcp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12);
2359                         DPRINTF("+++ C+ mode TCP checksum %04x\n",
2360                             tcp_checksum);
2361 
2362                         p_tcp_hdr->th_sum = tcp_checksum;
2363                     }
2364                     else if ((txdw0 & CP_TX_UDPCS) && ip_protocol == IP_PROTO_UDP)
2365                     {
2366                         DPRINTF("+++ C+ mode calculating UDP checksum for "
2367                             "packet with %d bytes data\n", ip_data_len);
2368 
2369                         ip_pseudo_header *p_udpip_hdr = (ip_pseudo_header *)data_to_checksum;
2370                         p_udpip_hdr->zeros      = 0;
2371                         p_udpip_hdr->ip_proto   = IP_PROTO_UDP;
2372                         p_udpip_hdr->ip_payload = cpu_to_be16(ip_data_len);
2373 
2374                         udp_header *p_udp_hdr = (udp_header *) (data_to_checksum+12);
2375 
2376                         p_udp_hdr->uh_sum = 0;
2377 
2378                         int udp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12);
2379                         DPRINTF("+++ C+ mode UDP checksum %04x\n",
2380                             udp_checksum);
2381 
2382                         p_udp_hdr->uh_sum = udp_checksum;
2383                     }
2384 
2385                     /* restore IP header */
2386                     memcpy(eth_payload_data, saved_ip_header, hlen);
2387                 }
2388             }
2389         }
2390 
2391         /* update tally counter */
2392         ++s->tally_counters.TxOk;
2393 
2394         DPRINTF("+++ C+ mode transmitting %d bytes packet\n", saved_size);
2395 
2396         rtl8139_transfer_frame(s, saved_buffer, saved_size, 1,
2397             (uint8_t *) dot1q_buffer);
2398 
2399         /* restore card space if there was no recursion and reset offset */
2400         if (!s->cplus_txbuffer)
2401         {
2402             s->cplus_txbuffer        = saved_buffer;
2403             s->cplus_txbuffer_len    = saved_buffer_len;
2404             s->cplus_txbuffer_offset = 0;
2405         }
2406         else
2407         {
2408             g_free(saved_buffer);
2409         }
2410     }
2411     else
2412     {
2413         DPRINTF("+++ C+ mode transmission continue to next descriptor\n");
2414     }
2415 
2416     return 1;
2417 }
2418 
2419 static void rtl8139_cplus_transmit(RTL8139State *s)
2420 {
2421     int txcount = 0;
2422 
2423     while (rtl8139_cplus_transmit_one(s))
2424     {
2425         ++txcount;
2426     }
2427 
2428     /* Mark transfer completed */
2429     if (!txcount)
2430     {
2431         DPRINTF("C+ mode : transmitter queue stalled, current TxDesc = %d\n",
2432             s->currCPlusTxDesc);
2433     }
2434     else
2435     {
2436         /* update interrupt status */
2437         s->IntrStatus |= TxOK;
2438         rtl8139_update_irq(s);
2439     }
2440 }
2441 
2442 static void rtl8139_transmit(RTL8139State *s)
2443 {
2444     int descriptor = s->currTxDesc, txcount = 0;
2445 
2446     /*while*/
2447     if (rtl8139_transmit_one(s, descriptor))
2448     {
2449         ++s->currTxDesc;
2450         s->currTxDesc %= 4;
2451         ++txcount;
2452     }
2453 
2454     /* Mark transfer completed */
2455     if (!txcount)
2456     {
2457         DPRINTF("transmitter queue stalled, current TxDesc = %d\n",
2458             s->currTxDesc);
2459     }
2460 }
2461 
2462 static void rtl8139_TxStatus_write(RTL8139State *s, uint32_t txRegOffset, uint32_t val)
2463 {
2464 
2465     int descriptor = txRegOffset/4;
2466 
2467     /* handle C+ transmit mode register configuration */
2468 
2469     if (s->cplus_enabled)
2470     {
2471         DPRINTF("RTL8139C+ DTCCR write offset=0x%x val=0x%08x "
2472             "descriptor=%d\n", txRegOffset, val, descriptor);
2473 
2474         /* handle Dump Tally Counters command */
2475         s->TxStatus[descriptor] = val;
2476 
2477         if (descriptor == 0 && (val & 0x8))
2478         {
2479             hwaddr tc_addr = rtl8139_addr64(s->TxStatus[0] & ~0x3f, s->TxStatus[1]);
2480 
2481             /* dump tally counters to specified memory location */
2482             RTL8139TallyCounters_dma_write(s, tc_addr);
2483 
2484             /* mark dump completed */
2485             s->TxStatus[0] &= ~0x8;
2486         }
2487 
2488         return;
2489     }
2490 
2491     DPRINTF("TxStatus write offset=0x%x val=0x%08x descriptor=%d\n",
2492         txRegOffset, val, descriptor);
2493 
2494     /* mask only reserved bits */
2495     val &= ~0xff00c000; /* these bits are reset on write */
2496     val = SET_MASKED(val, 0x00c00000, s->TxStatus[descriptor]);
2497 
2498     s->TxStatus[descriptor] = val;
2499 
2500     /* attempt to start transmission */
2501     rtl8139_transmit(s);
2502 }
2503 
2504 static uint32_t rtl8139_TxStatus_TxAddr_read(RTL8139State *s, uint32_t regs[],
2505                                              uint32_t base, uint8_t addr,
2506                                              int size)
2507 {
2508     uint32_t reg = (addr - base) / 4;
2509     uint32_t offset = addr & 0x3;
2510     uint32_t ret = 0;
2511 
2512     if (addr & (size - 1)) {
2513         DPRINTF("not implemented read for TxStatus/TxAddr "
2514                 "addr=0x%x size=0x%x\n", addr, size);
2515         return ret;
2516     }
2517 
2518     switch (size) {
2519     case 1: /* fall through */
2520     case 2: /* fall through */
2521     case 4:
2522         ret = (regs[reg] >> offset * 8) & (((uint64_t)1 << (size * 8)) - 1);
2523         DPRINTF("TxStatus/TxAddr[%d] read addr=0x%x size=0x%x val=0x%08x\n",
2524                 reg, addr, size, ret);
2525         break;
2526     default:
2527         DPRINTF("unsupported size 0x%x of TxStatus/TxAddr reading\n", size);
2528         break;
2529     }
2530 
2531     return ret;
2532 }
2533 
2534 static uint16_t rtl8139_TSAD_read(RTL8139State *s)
2535 {
2536     uint16_t ret = 0;
2537 
2538     /* Simulate TSAD, it is read only anyway */
2539 
2540     ret = ((s->TxStatus[3] & TxStatOK  )?TSAD_TOK3:0)
2541          |((s->TxStatus[2] & TxStatOK  )?TSAD_TOK2:0)
2542          |((s->TxStatus[1] & TxStatOK  )?TSAD_TOK1:0)
2543          |((s->TxStatus[0] & TxStatOK  )?TSAD_TOK0:0)
2544 
2545          |((s->TxStatus[3] & TxUnderrun)?TSAD_TUN3:0)
2546          |((s->TxStatus[2] & TxUnderrun)?TSAD_TUN2:0)
2547          |((s->TxStatus[1] & TxUnderrun)?TSAD_TUN1:0)
2548          |((s->TxStatus[0] & TxUnderrun)?TSAD_TUN0:0)
2549 
2550          |((s->TxStatus[3] & TxAborted )?TSAD_TABT3:0)
2551          |((s->TxStatus[2] & TxAborted )?TSAD_TABT2:0)
2552          |((s->TxStatus[1] & TxAborted )?TSAD_TABT1:0)
2553          |((s->TxStatus[0] & TxAborted )?TSAD_TABT0:0)
2554 
2555          |((s->TxStatus[3] & TxHostOwns )?TSAD_OWN3:0)
2556          |((s->TxStatus[2] & TxHostOwns )?TSAD_OWN2:0)
2557          |((s->TxStatus[1] & TxHostOwns )?TSAD_OWN1:0)
2558          |((s->TxStatus[0] & TxHostOwns )?TSAD_OWN0:0) ;
2559 
2560 
2561     DPRINTF("TSAD read val=0x%04x\n", ret);
2562 
2563     return ret;
2564 }
2565 
2566 static uint16_t rtl8139_CSCR_read(RTL8139State *s)
2567 {
2568     uint16_t ret = s->CSCR;
2569 
2570     DPRINTF("CSCR read val=0x%04x\n", ret);
2571 
2572     return ret;
2573 }
2574 
2575 static void rtl8139_TxAddr_write(RTL8139State *s, uint32_t txAddrOffset, uint32_t val)
2576 {
2577     DPRINTF("TxAddr write offset=0x%x val=0x%08x\n", txAddrOffset, val);
2578 
2579     s->TxAddr[txAddrOffset/4] = val;
2580 }
2581 
2582 static uint32_t rtl8139_TxAddr_read(RTL8139State *s, uint32_t txAddrOffset)
2583 {
2584     uint32_t ret = s->TxAddr[txAddrOffset/4];
2585 
2586     DPRINTF("TxAddr read offset=0x%x val=0x%08x\n", txAddrOffset, ret);
2587 
2588     return ret;
2589 }
2590 
2591 static void rtl8139_RxBufPtr_write(RTL8139State *s, uint32_t val)
2592 {
2593     DPRINTF("RxBufPtr write val=0x%04x\n", val);
2594 
2595     /* this value is off by 16 */
2596     s->RxBufPtr = MOD2(val + 0x10, s->RxBufferSize);
2597 
2598     /* more buffer space may be available so try to receive */
2599     qemu_flush_queued_packets(qemu_get_queue(s->nic));
2600 
2601     DPRINTF(" CAPR write: rx buffer length %d head 0x%04x read 0x%04x\n",
2602         s->RxBufferSize, s->RxBufAddr, s->RxBufPtr);
2603 }
2604 
2605 static uint32_t rtl8139_RxBufPtr_read(RTL8139State *s)
2606 {
2607     /* this value is off by 16 */
2608     uint32_t ret = s->RxBufPtr - 0x10;
2609 
2610     DPRINTF("RxBufPtr read val=0x%04x\n", ret);
2611 
2612     return ret;
2613 }
2614 
2615 static uint32_t rtl8139_RxBufAddr_read(RTL8139State *s)
2616 {
2617     /* this value is NOT off by 16 */
2618     uint32_t ret = s->RxBufAddr;
2619 
2620     DPRINTF("RxBufAddr read val=0x%04x\n", ret);
2621 
2622     return ret;
2623 }
2624 
2625 static void rtl8139_RxBuf_write(RTL8139State *s, uint32_t val)
2626 {
2627     DPRINTF("RxBuf write val=0x%08x\n", val);
2628 
2629     s->RxBuf = val;
2630 
2631     /* may need to reset rxring here */
2632 }
2633 
2634 static uint32_t rtl8139_RxBuf_read(RTL8139State *s)
2635 {
2636     uint32_t ret = s->RxBuf;
2637 
2638     DPRINTF("RxBuf read val=0x%08x\n", ret);
2639 
2640     return ret;
2641 }
2642 
2643 static void rtl8139_IntrMask_write(RTL8139State *s, uint32_t val)
2644 {
2645     DPRINTF("IntrMask write(w) val=0x%04x\n", val);
2646 
2647     /* mask unwritable bits */
2648     val = SET_MASKED(val, 0x1e00, s->IntrMask);
2649 
2650     s->IntrMask = val;
2651 
2652     rtl8139_set_next_tctr_time(s, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
2653     rtl8139_update_irq(s);
2654 
2655 }
2656 
2657 static uint32_t rtl8139_IntrMask_read(RTL8139State *s)
2658 {
2659     uint32_t ret = s->IntrMask;
2660 
2661     DPRINTF("IntrMask read(w) val=0x%04x\n", ret);
2662 
2663     return ret;
2664 }
2665 
2666 static void rtl8139_IntrStatus_write(RTL8139State *s, uint32_t val)
2667 {
2668     DPRINTF("IntrStatus write(w) val=0x%04x\n", val);
2669 
2670 #if 0
2671 
2672     /* writing to ISR has no effect */
2673 
2674     return;
2675 
2676 #else
2677     uint16_t newStatus = s->IntrStatus & ~val;
2678 
2679     /* mask unwritable bits */
2680     newStatus = SET_MASKED(newStatus, 0x1e00, s->IntrStatus);
2681 
2682     /* writing 1 to interrupt status register bit clears it */
2683     s->IntrStatus = 0;
2684     rtl8139_update_irq(s);
2685 
2686     s->IntrStatus = newStatus;
2687     /*
2688      * Computing if we miss an interrupt here is not that correct but
2689      * considered that we should have had already an interrupt
2690      * and probably emulated is slower is better to assume this resetting was
2691      * done before testing on previous rtl8139_update_irq lead to IRQ losing
2692      */
2693     rtl8139_set_next_tctr_time(s, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
2694     rtl8139_update_irq(s);
2695 
2696 #endif
2697 }
2698 
2699 static uint32_t rtl8139_IntrStatus_read(RTL8139State *s)
2700 {
2701     rtl8139_set_next_tctr_time(s, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
2702 
2703     uint32_t ret = s->IntrStatus;
2704 
2705     DPRINTF("IntrStatus read(w) val=0x%04x\n", ret);
2706 
2707 #if 0
2708 
2709     /* reading ISR clears all interrupts */
2710     s->IntrStatus = 0;
2711 
2712     rtl8139_update_irq(s);
2713 
2714 #endif
2715 
2716     return ret;
2717 }
2718 
2719 static void rtl8139_MultiIntr_write(RTL8139State *s, uint32_t val)
2720 {
2721     DPRINTF("MultiIntr write(w) val=0x%04x\n", val);
2722 
2723     /* mask unwritable bits */
2724     val = SET_MASKED(val, 0xf000, s->MultiIntr);
2725 
2726     s->MultiIntr = val;
2727 }
2728 
2729 static uint32_t rtl8139_MultiIntr_read(RTL8139State *s)
2730 {
2731     uint32_t ret = s->MultiIntr;
2732 
2733     DPRINTF("MultiIntr read(w) val=0x%04x\n", ret);
2734 
2735     return ret;
2736 }
2737 
2738 static void rtl8139_io_writeb(void *opaque, uint8_t addr, uint32_t val)
2739 {
2740     RTL8139State *s = opaque;
2741 
2742     switch (addr)
2743     {
2744         case MAC0 ... MAC0+4:
2745             s->phys[addr - MAC0] = val;
2746             break;
2747         case MAC0+5:
2748             s->phys[addr - MAC0] = val;
2749             qemu_format_nic_info_str(qemu_get_queue(s->nic), s->phys);
2750             break;
2751         case MAC0+6 ... MAC0+7:
2752             /* reserved */
2753             break;
2754         case MAR0 ... MAR0+7:
2755             s->mult[addr - MAR0] = val;
2756             break;
2757         case ChipCmd:
2758             rtl8139_ChipCmd_write(s, val);
2759             break;
2760         case Cfg9346:
2761             rtl8139_Cfg9346_write(s, val);
2762             break;
2763         case TxConfig: /* windows driver sometimes writes using byte-lenth call */
2764             rtl8139_TxConfig_writeb(s, val);
2765             break;
2766         case Config0:
2767             rtl8139_Config0_write(s, val);
2768             break;
2769         case Config1:
2770             rtl8139_Config1_write(s, val);
2771             break;
2772         case Config3:
2773             rtl8139_Config3_write(s, val);
2774             break;
2775         case Config4:
2776             rtl8139_Config4_write(s, val);
2777             break;
2778         case Config5:
2779             rtl8139_Config5_write(s, val);
2780             break;
2781         case MediaStatus:
2782             /* ignore */
2783             DPRINTF("not implemented write(b) to MediaStatus val=0x%02x\n",
2784                 val);
2785             break;
2786 
2787         case HltClk:
2788             DPRINTF("HltClk write val=0x%08x\n", val);
2789             if (val == 'R')
2790             {
2791                 s->clock_enabled = 1;
2792             }
2793             else if (val == 'H')
2794             {
2795                 s->clock_enabled = 0;
2796             }
2797             break;
2798 
2799         case TxThresh:
2800             DPRINTF("C+ TxThresh write(b) val=0x%02x\n", val);
2801             s->TxThresh = val;
2802             break;
2803 
2804         case TxPoll:
2805             DPRINTF("C+ TxPoll write(b) val=0x%02x\n", val);
2806             if (val & (1 << 7))
2807             {
2808                 DPRINTF("C+ TxPoll high priority transmission (not "
2809                     "implemented)\n");
2810                 //rtl8139_cplus_transmit(s);
2811             }
2812             if (val & (1 << 6))
2813             {
2814                 DPRINTF("C+ TxPoll normal priority transmission\n");
2815                 rtl8139_cplus_transmit(s);
2816             }
2817 
2818             break;
2819 
2820         default:
2821             DPRINTF("not implemented write(b) addr=0x%x val=0x%02x\n", addr,
2822                 val);
2823             break;
2824     }
2825 }
2826 
2827 static void rtl8139_io_writew(void *opaque, uint8_t addr, uint32_t val)
2828 {
2829     RTL8139State *s = opaque;
2830 
2831     switch (addr)
2832     {
2833         case IntrMask:
2834             rtl8139_IntrMask_write(s, val);
2835             break;
2836 
2837         case IntrStatus:
2838             rtl8139_IntrStatus_write(s, val);
2839             break;
2840 
2841         case MultiIntr:
2842             rtl8139_MultiIntr_write(s, val);
2843             break;
2844 
2845         case RxBufPtr:
2846             rtl8139_RxBufPtr_write(s, val);
2847             break;
2848 
2849         case BasicModeCtrl:
2850             rtl8139_BasicModeCtrl_write(s, val);
2851             break;
2852         case BasicModeStatus:
2853             rtl8139_BasicModeStatus_write(s, val);
2854             break;
2855         case NWayAdvert:
2856             DPRINTF("NWayAdvert write(w) val=0x%04x\n", val);
2857             s->NWayAdvert = val;
2858             break;
2859         case NWayLPAR:
2860             DPRINTF("forbidden NWayLPAR write(w) val=0x%04x\n", val);
2861             break;
2862         case NWayExpansion:
2863             DPRINTF("NWayExpansion write(w) val=0x%04x\n", val);
2864             s->NWayExpansion = val;
2865             break;
2866 
2867         case CpCmd:
2868             rtl8139_CpCmd_write(s, val);
2869             break;
2870 
2871         case IntrMitigate:
2872             rtl8139_IntrMitigate_write(s, val);
2873             break;
2874 
2875         default:
2876             DPRINTF("ioport write(w) addr=0x%x val=0x%04x via write(b)\n",
2877                 addr, val);
2878 
2879             rtl8139_io_writeb(opaque, addr, val & 0xff);
2880             rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff);
2881             break;
2882     }
2883 }
2884 
2885 static void rtl8139_set_next_tctr_time(RTL8139State *s, int64_t current_time)
2886 {
2887     int64_t pci_time, next_time;
2888     uint32_t low_pci;
2889 
2890     DPRINTF("entered rtl8139_set_next_tctr_time\n");
2891 
2892     if (s->TimerExpire && current_time >= s->TimerExpire) {
2893         s->IntrStatus |= PCSTimeout;
2894         rtl8139_update_irq(s);
2895     }
2896 
2897     /* Set QEMU timer only if needed that is
2898      * - TimerInt <> 0 (we have a timer)
2899      * - mask = 1 (we want an interrupt timer)
2900      * - irq = 0  (irq is not already active)
2901      * If any of above change we need to compute timer again
2902      * Also we must check if timer is passed without QEMU timer
2903      */
2904     s->TimerExpire = 0;
2905     if (!s->TimerInt) {
2906         return;
2907     }
2908 
2909     pci_time = muldiv64(current_time - s->TCTR_base, PCI_FREQUENCY,
2910                                 get_ticks_per_sec());
2911     low_pci = pci_time & 0xffffffff;
2912     pci_time = pci_time - low_pci + s->TimerInt;
2913     if (low_pci >= s->TimerInt) {
2914         pci_time += 0x100000000LL;
2915     }
2916     next_time = s->TCTR_base + muldiv64(pci_time, get_ticks_per_sec(),
2917                                                 PCI_FREQUENCY);
2918     s->TimerExpire = next_time;
2919 
2920     if ((s->IntrMask & PCSTimeout) != 0 && (s->IntrStatus & PCSTimeout) == 0) {
2921         timer_mod(s->timer, next_time);
2922     }
2923 }
2924 
2925 static void rtl8139_io_writel(void *opaque, uint8_t addr, uint32_t val)
2926 {
2927     RTL8139State *s = opaque;
2928 
2929     switch (addr)
2930     {
2931         case RxMissed:
2932             DPRINTF("RxMissed clearing on write\n");
2933             s->RxMissed = 0;
2934             break;
2935 
2936         case TxConfig:
2937             rtl8139_TxConfig_write(s, val);
2938             break;
2939 
2940         case RxConfig:
2941             rtl8139_RxConfig_write(s, val);
2942             break;
2943 
2944         case TxStatus0 ... TxStatus0+4*4-1:
2945             rtl8139_TxStatus_write(s, addr-TxStatus0, val);
2946             break;
2947 
2948         case TxAddr0 ... TxAddr0+4*4-1:
2949             rtl8139_TxAddr_write(s, addr-TxAddr0, val);
2950             break;
2951 
2952         case RxBuf:
2953             rtl8139_RxBuf_write(s, val);
2954             break;
2955 
2956         case RxRingAddrLO:
2957             DPRINTF("C+ RxRing low bits write val=0x%08x\n", val);
2958             s->RxRingAddrLO = val;
2959             break;
2960 
2961         case RxRingAddrHI:
2962             DPRINTF("C+ RxRing high bits write val=0x%08x\n", val);
2963             s->RxRingAddrHI = val;
2964             break;
2965 
2966         case Timer:
2967             DPRINTF("TCTR Timer reset on write\n");
2968             s->TCTR_base = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
2969             rtl8139_set_next_tctr_time(s, s->TCTR_base);
2970             break;
2971 
2972         case FlashReg:
2973             DPRINTF("FlashReg TimerInt write val=0x%08x\n", val);
2974             if (s->TimerInt != val) {
2975                 s->TimerInt = val;
2976                 rtl8139_set_next_tctr_time(s, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
2977             }
2978             break;
2979 
2980         default:
2981             DPRINTF("ioport write(l) addr=0x%x val=0x%08x via write(b)\n",
2982                 addr, val);
2983             rtl8139_io_writeb(opaque, addr, val & 0xff);
2984             rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff);
2985             rtl8139_io_writeb(opaque, addr + 2, (val >> 16) & 0xff);
2986             rtl8139_io_writeb(opaque, addr + 3, (val >> 24) & 0xff);
2987             break;
2988     }
2989 }
2990 
2991 static uint32_t rtl8139_io_readb(void *opaque, uint8_t addr)
2992 {
2993     RTL8139State *s = opaque;
2994     int ret;
2995 
2996     switch (addr)
2997     {
2998         case MAC0 ... MAC0+5:
2999             ret = s->phys[addr - MAC0];
3000             break;
3001         case MAC0+6 ... MAC0+7:
3002             ret = 0;
3003             break;
3004         case MAR0 ... MAR0+7:
3005             ret = s->mult[addr - MAR0];
3006             break;
3007         case TxStatus0 ... TxStatus0+4*4-1:
3008             ret = rtl8139_TxStatus_TxAddr_read(s, s->TxStatus, TxStatus0,
3009                                                addr, 1);
3010             break;
3011         case ChipCmd:
3012             ret = rtl8139_ChipCmd_read(s);
3013             break;
3014         case Cfg9346:
3015             ret = rtl8139_Cfg9346_read(s);
3016             break;
3017         case Config0:
3018             ret = rtl8139_Config0_read(s);
3019             break;
3020         case Config1:
3021             ret = rtl8139_Config1_read(s);
3022             break;
3023         case Config3:
3024             ret = rtl8139_Config3_read(s);
3025             break;
3026         case Config4:
3027             ret = rtl8139_Config4_read(s);
3028             break;
3029         case Config5:
3030             ret = rtl8139_Config5_read(s);
3031             break;
3032 
3033         case MediaStatus:
3034             /* The LinkDown bit of MediaStatus is inverse with link status */
3035             ret = 0xd0 | (~s->BasicModeStatus & 0x04);
3036             DPRINTF("MediaStatus read 0x%x\n", ret);
3037             break;
3038 
3039         case HltClk:
3040             ret = s->clock_enabled;
3041             DPRINTF("HltClk read 0x%x\n", ret);
3042             break;
3043 
3044         case PCIRevisionID:
3045             ret = RTL8139_PCI_REVID;
3046             DPRINTF("PCI Revision ID read 0x%x\n", ret);
3047             break;
3048 
3049         case TxThresh:
3050             ret = s->TxThresh;
3051             DPRINTF("C+ TxThresh read(b) val=0x%02x\n", ret);
3052             break;
3053 
3054         case 0x43: /* Part of TxConfig register. Windows driver tries to read it */
3055             ret = s->TxConfig >> 24;
3056             DPRINTF("RTL8139C TxConfig at 0x43 read(b) val=0x%02x\n", ret);
3057             break;
3058 
3059         default:
3060             DPRINTF("not implemented read(b) addr=0x%x\n", addr);
3061             ret = 0;
3062             break;
3063     }
3064 
3065     return ret;
3066 }
3067 
3068 static uint32_t rtl8139_io_readw(void *opaque, uint8_t addr)
3069 {
3070     RTL8139State *s = opaque;
3071     uint32_t ret;
3072 
3073     switch (addr)
3074     {
3075         case TxAddr0 ... TxAddr0+4*4-1:
3076             ret = rtl8139_TxStatus_TxAddr_read(s, s->TxAddr, TxAddr0, addr, 2);
3077             break;
3078         case IntrMask:
3079             ret = rtl8139_IntrMask_read(s);
3080             break;
3081 
3082         case IntrStatus:
3083             ret = rtl8139_IntrStatus_read(s);
3084             break;
3085 
3086         case MultiIntr:
3087             ret = rtl8139_MultiIntr_read(s);
3088             break;
3089 
3090         case RxBufPtr:
3091             ret = rtl8139_RxBufPtr_read(s);
3092             break;
3093 
3094         case RxBufAddr:
3095             ret = rtl8139_RxBufAddr_read(s);
3096             break;
3097 
3098         case BasicModeCtrl:
3099             ret = rtl8139_BasicModeCtrl_read(s);
3100             break;
3101         case BasicModeStatus:
3102             ret = rtl8139_BasicModeStatus_read(s);
3103             break;
3104         case NWayAdvert:
3105             ret = s->NWayAdvert;
3106             DPRINTF("NWayAdvert read(w) val=0x%04x\n", ret);
3107             break;
3108         case NWayLPAR:
3109             ret = s->NWayLPAR;
3110             DPRINTF("NWayLPAR read(w) val=0x%04x\n", ret);
3111             break;
3112         case NWayExpansion:
3113             ret = s->NWayExpansion;
3114             DPRINTF("NWayExpansion read(w) val=0x%04x\n", ret);
3115             break;
3116 
3117         case CpCmd:
3118             ret = rtl8139_CpCmd_read(s);
3119             break;
3120 
3121         case IntrMitigate:
3122             ret = rtl8139_IntrMitigate_read(s);
3123             break;
3124 
3125         case TxSummary:
3126             ret = rtl8139_TSAD_read(s);
3127             break;
3128 
3129         case CSCR:
3130             ret = rtl8139_CSCR_read(s);
3131             break;
3132 
3133         default:
3134             DPRINTF("ioport read(w) addr=0x%x via read(b)\n", addr);
3135 
3136             ret  = rtl8139_io_readb(opaque, addr);
3137             ret |= rtl8139_io_readb(opaque, addr + 1) << 8;
3138 
3139             DPRINTF("ioport read(w) addr=0x%x val=0x%04x\n", addr, ret);
3140             break;
3141     }
3142 
3143     return ret;
3144 }
3145 
3146 static uint32_t rtl8139_io_readl(void *opaque, uint8_t addr)
3147 {
3148     RTL8139State *s = opaque;
3149     uint32_t ret;
3150 
3151     switch (addr)
3152     {
3153         case RxMissed:
3154             ret = s->RxMissed;
3155 
3156             DPRINTF("RxMissed read val=0x%08x\n", ret);
3157             break;
3158 
3159         case TxConfig:
3160             ret = rtl8139_TxConfig_read(s);
3161             break;
3162 
3163         case RxConfig:
3164             ret = rtl8139_RxConfig_read(s);
3165             break;
3166 
3167         case TxStatus0 ... TxStatus0+4*4-1:
3168             ret = rtl8139_TxStatus_TxAddr_read(s, s->TxStatus, TxStatus0,
3169                                                addr, 4);
3170             break;
3171 
3172         case TxAddr0 ... TxAddr0+4*4-1:
3173             ret = rtl8139_TxAddr_read(s, addr-TxAddr0);
3174             break;
3175 
3176         case RxBuf:
3177             ret = rtl8139_RxBuf_read(s);
3178             break;
3179 
3180         case RxRingAddrLO:
3181             ret = s->RxRingAddrLO;
3182             DPRINTF("C+ RxRing low bits read val=0x%08x\n", ret);
3183             break;
3184 
3185         case RxRingAddrHI:
3186             ret = s->RxRingAddrHI;
3187             DPRINTF("C+ RxRing high bits read val=0x%08x\n", ret);
3188             break;
3189 
3190         case Timer:
3191             ret = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - s->TCTR_base,
3192                            PCI_FREQUENCY, get_ticks_per_sec());
3193             DPRINTF("TCTR Timer read val=0x%08x\n", ret);
3194             break;
3195 
3196         case FlashReg:
3197             ret = s->TimerInt;
3198             DPRINTF("FlashReg TimerInt read val=0x%08x\n", ret);
3199             break;
3200 
3201         default:
3202             DPRINTF("ioport read(l) addr=0x%x via read(b)\n", addr);
3203 
3204             ret  = rtl8139_io_readb(opaque, addr);
3205             ret |= rtl8139_io_readb(opaque, addr + 1) << 8;
3206             ret |= rtl8139_io_readb(opaque, addr + 2) << 16;
3207             ret |= rtl8139_io_readb(opaque, addr + 3) << 24;
3208 
3209             DPRINTF("read(l) addr=0x%x val=%08x\n", addr, ret);
3210             break;
3211     }
3212 
3213     return ret;
3214 }
3215 
3216 /* */
3217 
3218 static void rtl8139_mmio_writeb(void *opaque, hwaddr addr, uint32_t val)
3219 {
3220     rtl8139_io_writeb(opaque, addr & 0xFF, val);
3221 }
3222 
3223 static void rtl8139_mmio_writew(void *opaque, hwaddr addr, uint32_t val)
3224 {
3225     rtl8139_io_writew(opaque, addr & 0xFF, val);
3226 }
3227 
3228 static void rtl8139_mmio_writel(void *opaque, hwaddr addr, uint32_t val)
3229 {
3230     rtl8139_io_writel(opaque, addr & 0xFF, val);
3231 }
3232 
3233 static uint32_t rtl8139_mmio_readb(void *opaque, hwaddr addr)
3234 {
3235     return rtl8139_io_readb(opaque, addr & 0xFF);
3236 }
3237 
3238 static uint32_t rtl8139_mmio_readw(void *opaque, hwaddr addr)
3239 {
3240     uint32_t val = rtl8139_io_readw(opaque, addr & 0xFF);
3241     return val;
3242 }
3243 
3244 static uint32_t rtl8139_mmio_readl(void *opaque, hwaddr addr)
3245 {
3246     uint32_t val = rtl8139_io_readl(opaque, addr & 0xFF);
3247     return val;
3248 }
3249 
3250 static int rtl8139_post_load(void *opaque, int version_id)
3251 {
3252     RTL8139State* s = opaque;
3253     rtl8139_set_next_tctr_time(s, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
3254     if (version_id < 4) {
3255         s->cplus_enabled = s->CpCmd != 0;
3256     }
3257 
3258     /* nc.link_down can't be migrated, so infer link_down according
3259      * to link status bit in BasicModeStatus */
3260     qemu_get_queue(s->nic)->link_down = (s->BasicModeStatus & 0x04) == 0;
3261 
3262     return 0;
3263 }
3264 
3265 static bool rtl8139_hotplug_ready_needed(void *opaque)
3266 {
3267     return qdev_machine_modified();
3268 }
3269 
3270 static const VMStateDescription vmstate_rtl8139_hotplug_ready ={
3271     .name = "rtl8139/hotplug_ready",
3272     .version_id = 1,
3273     .minimum_version_id = 1,
3274     .minimum_version_id_old = 1,
3275     .fields      = (VMStateField []) {
3276         VMSTATE_END_OF_LIST()
3277     }
3278 };
3279 
3280 static void rtl8139_pre_save(void *opaque)
3281 {
3282     RTL8139State* s = opaque;
3283     int64_t current_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
3284 
3285     /* set IntrStatus correctly */
3286     rtl8139_set_next_tctr_time(s, current_time);
3287     s->TCTR = muldiv64(current_time - s->TCTR_base, PCI_FREQUENCY,
3288                        get_ticks_per_sec());
3289     s->rtl8139_mmio_io_addr_dummy = 0;
3290 }
3291 
3292 static const VMStateDescription vmstate_rtl8139 = {
3293     .name = "rtl8139",
3294     .version_id = 4,
3295     .minimum_version_id = 3,
3296     .minimum_version_id_old = 3,
3297     .post_load = rtl8139_post_load,
3298     .pre_save  = rtl8139_pre_save,
3299     .fields      = (VMStateField []) {
3300         VMSTATE_PCI_DEVICE(parent_obj, RTL8139State),
3301         VMSTATE_PARTIAL_BUFFER(phys, RTL8139State, 6),
3302         VMSTATE_BUFFER(mult, RTL8139State),
3303         VMSTATE_UINT32_ARRAY(TxStatus, RTL8139State, 4),
3304         VMSTATE_UINT32_ARRAY(TxAddr, RTL8139State, 4),
3305 
3306         VMSTATE_UINT32(RxBuf, RTL8139State),
3307         VMSTATE_UINT32(RxBufferSize, RTL8139State),
3308         VMSTATE_UINT32(RxBufPtr, RTL8139State),
3309         VMSTATE_UINT32(RxBufAddr, RTL8139State),
3310 
3311         VMSTATE_UINT16(IntrStatus, RTL8139State),
3312         VMSTATE_UINT16(IntrMask, RTL8139State),
3313 
3314         VMSTATE_UINT32(TxConfig, RTL8139State),
3315         VMSTATE_UINT32(RxConfig, RTL8139State),
3316         VMSTATE_UINT32(RxMissed, RTL8139State),
3317         VMSTATE_UINT16(CSCR, RTL8139State),
3318 
3319         VMSTATE_UINT8(Cfg9346, RTL8139State),
3320         VMSTATE_UINT8(Config0, RTL8139State),
3321         VMSTATE_UINT8(Config1, RTL8139State),
3322         VMSTATE_UINT8(Config3, RTL8139State),
3323         VMSTATE_UINT8(Config4, RTL8139State),
3324         VMSTATE_UINT8(Config5, RTL8139State),
3325 
3326         VMSTATE_UINT8(clock_enabled, RTL8139State),
3327         VMSTATE_UINT8(bChipCmdState, RTL8139State),
3328 
3329         VMSTATE_UINT16(MultiIntr, RTL8139State),
3330 
3331         VMSTATE_UINT16(BasicModeCtrl, RTL8139State),
3332         VMSTATE_UINT16(BasicModeStatus, RTL8139State),
3333         VMSTATE_UINT16(NWayAdvert, RTL8139State),
3334         VMSTATE_UINT16(NWayLPAR, RTL8139State),
3335         VMSTATE_UINT16(NWayExpansion, RTL8139State),
3336 
3337         VMSTATE_UINT16(CpCmd, RTL8139State),
3338         VMSTATE_UINT8(TxThresh, RTL8139State),
3339 
3340         VMSTATE_UNUSED(4),
3341         VMSTATE_MACADDR(conf.macaddr, RTL8139State),
3342         VMSTATE_INT32(rtl8139_mmio_io_addr_dummy, RTL8139State),
3343 
3344         VMSTATE_UINT32(currTxDesc, RTL8139State),
3345         VMSTATE_UINT32(currCPlusRxDesc, RTL8139State),
3346         VMSTATE_UINT32(currCPlusTxDesc, RTL8139State),
3347         VMSTATE_UINT32(RxRingAddrLO, RTL8139State),
3348         VMSTATE_UINT32(RxRingAddrHI, RTL8139State),
3349 
3350         VMSTATE_UINT16_ARRAY(eeprom.contents, RTL8139State, EEPROM_9346_SIZE),
3351         VMSTATE_INT32(eeprom.mode, RTL8139State),
3352         VMSTATE_UINT32(eeprom.tick, RTL8139State),
3353         VMSTATE_UINT8(eeprom.address, RTL8139State),
3354         VMSTATE_UINT16(eeprom.input, RTL8139State),
3355         VMSTATE_UINT16(eeprom.output, RTL8139State),
3356 
3357         VMSTATE_UINT8(eeprom.eecs, RTL8139State),
3358         VMSTATE_UINT8(eeprom.eesk, RTL8139State),
3359         VMSTATE_UINT8(eeprom.eedi, RTL8139State),
3360         VMSTATE_UINT8(eeprom.eedo, RTL8139State),
3361 
3362         VMSTATE_UINT32(TCTR, RTL8139State),
3363         VMSTATE_UINT32(TimerInt, RTL8139State),
3364         VMSTATE_INT64(TCTR_base, RTL8139State),
3365 
3366         VMSTATE_STRUCT(tally_counters, RTL8139State, 0,
3367                        vmstate_tally_counters, RTL8139TallyCounters),
3368 
3369         VMSTATE_UINT32_V(cplus_enabled, RTL8139State, 4),
3370         VMSTATE_END_OF_LIST()
3371     },
3372     .subsections = (VMStateSubsection []) {
3373         {
3374             .vmsd = &vmstate_rtl8139_hotplug_ready,
3375             .needed = rtl8139_hotplug_ready_needed,
3376         }, {
3377             /* empty */
3378         }
3379     }
3380 };
3381 
3382 /***********************************************************/
3383 /* PCI RTL8139 definitions */
3384 
3385 static void rtl8139_ioport_write(void *opaque, hwaddr addr,
3386                                  uint64_t val, unsigned size)
3387 {
3388     switch (size) {
3389     case 1:
3390         rtl8139_io_writeb(opaque, addr, val);
3391         break;
3392     case 2:
3393         rtl8139_io_writew(opaque, addr, val);
3394         break;
3395     case 4:
3396         rtl8139_io_writel(opaque, addr, val);
3397         break;
3398     }
3399 }
3400 
3401 static uint64_t rtl8139_ioport_read(void *opaque, hwaddr addr,
3402                                     unsigned size)
3403 {
3404     switch (size) {
3405     case 1:
3406         return rtl8139_io_readb(opaque, addr);
3407     case 2:
3408         return rtl8139_io_readw(opaque, addr);
3409     case 4:
3410         return rtl8139_io_readl(opaque, addr);
3411     }
3412 
3413     return -1;
3414 }
3415 
3416 static const MemoryRegionOps rtl8139_io_ops = {
3417     .read = rtl8139_ioport_read,
3418     .write = rtl8139_ioport_write,
3419     .impl = {
3420         .min_access_size = 1,
3421         .max_access_size = 4,
3422     },
3423     .endianness = DEVICE_LITTLE_ENDIAN,
3424 };
3425 
3426 static const MemoryRegionOps rtl8139_mmio_ops = {
3427     .old_mmio = {
3428         .read = {
3429             rtl8139_mmio_readb,
3430             rtl8139_mmio_readw,
3431             rtl8139_mmio_readl,
3432         },
3433         .write = {
3434             rtl8139_mmio_writeb,
3435             rtl8139_mmio_writew,
3436             rtl8139_mmio_writel,
3437         },
3438     },
3439     .endianness = DEVICE_LITTLE_ENDIAN,
3440 };
3441 
3442 static void rtl8139_timer(void *opaque)
3443 {
3444     RTL8139State *s = opaque;
3445 
3446     if (!s->clock_enabled)
3447     {
3448         DPRINTF(">>> timer: clock is not running\n");
3449         return;
3450     }
3451 
3452     s->IntrStatus |= PCSTimeout;
3453     rtl8139_update_irq(s);
3454     rtl8139_set_next_tctr_time(s, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
3455 }
3456 
3457 static void rtl8139_cleanup(NetClientState *nc)
3458 {
3459     RTL8139State *s = qemu_get_nic_opaque(nc);
3460 
3461     s->nic = NULL;
3462 }
3463 
3464 static void pci_rtl8139_uninit(PCIDevice *dev)
3465 {
3466     RTL8139State *s = RTL8139(dev);
3467 
3468     memory_region_destroy(&s->bar_io);
3469     memory_region_destroy(&s->bar_mem);
3470     if (s->cplus_txbuffer) {
3471         g_free(s->cplus_txbuffer);
3472         s->cplus_txbuffer = NULL;
3473     }
3474     timer_del(s->timer);
3475     timer_free(s->timer);
3476     qemu_del_nic(s->nic);
3477 }
3478 
3479 static void rtl8139_set_link_status(NetClientState *nc)
3480 {
3481     RTL8139State *s = qemu_get_nic_opaque(nc);
3482 
3483     if (nc->link_down) {
3484         s->BasicModeStatus &= ~0x04;
3485     } else {
3486         s->BasicModeStatus |= 0x04;
3487     }
3488 
3489     s->IntrStatus |= RxUnderrun;
3490     rtl8139_update_irq(s);
3491 }
3492 
3493 static NetClientInfo net_rtl8139_info = {
3494     .type = NET_CLIENT_OPTIONS_KIND_NIC,
3495     .size = sizeof(NICState),
3496     .can_receive = rtl8139_can_receive,
3497     .receive = rtl8139_receive,
3498     .cleanup = rtl8139_cleanup,
3499     .link_status_changed = rtl8139_set_link_status,
3500 };
3501 
3502 static int pci_rtl8139_init(PCIDevice *dev)
3503 {
3504     RTL8139State *s = RTL8139(dev);
3505     DeviceState *d = DEVICE(dev);
3506     uint8_t *pci_conf;
3507 
3508     pci_conf = dev->config;
3509     pci_conf[PCI_INTERRUPT_PIN] = 1;    /* interrupt pin A */
3510     /* TODO: start of capability list, but no capability
3511      * list bit in status register, and offset 0xdc seems unused. */
3512     pci_conf[PCI_CAPABILITY_LIST] = 0xdc;
3513 
3514     memory_region_init_io(&s->bar_io, OBJECT(s), &rtl8139_io_ops, s,
3515                           "rtl8139", 0x100);
3516     memory_region_init_io(&s->bar_mem, OBJECT(s), &rtl8139_mmio_ops, s,
3517                           "rtl8139", 0x100);
3518     pci_register_bar(dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &s->bar_io);
3519     pci_register_bar(dev, 1, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->bar_mem);
3520 
3521     qemu_macaddr_default_if_unset(&s->conf.macaddr);
3522 
3523     /* prepare eeprom */
3524     s->eeprom.contents[0] = 0x8129;
3525 #if 1
3526     /* PCI vendor and device ID should be mirrored here */
3527     s->eeprom.contents[1] = PCI_VENDOR_ID_REALTEK;
3528     s->eeprom.contents[2] = PCI_DEVICE_ID_REALTEK_8139;
3529 #endif
3530     s->eeprom.contents[7] = s->conf.macaddr.a[0] | s->conf.macaddr.a[1] << 8;
3531     s->eeprom.contents[8] = s->conf.macaddr.a[2] | s->conf.macaddr.a[3] << 8;
3532     s->eeprom.contents[9] = s->conf.macaddr.a[4] | s->conf.macaddr.a[5] << 8;
3533 
3534     s->nic = qemu_new_nic(&net_rtl8139_info, &s->conf,
3535                           object_get_typename(OBJECT(dev)), d->id, s);
3536     qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
3537 
3538     s->cplus_txbuffer = NULL;
3539     s->cplus_txbuffer_len = 0;
3540     s->cplus_txbuffer_offset = 0;
3541 
3542     s->TimerExpire = 0;
3543     s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, rtl8139_timer, s);
3544     rtl8139_set_next_tctr_time(s, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
3545 
3546     add_boot_device_path(s->conf.bootindex, d, "/ethernet-phy@0");
3547 
3548     return 0;
3549 }
3550 
3551 static Property rtl8139_properties[] = {
3552     DEFINE_NIC_PROPERTIES(RTL8139State, conf),
3553     DEFINE_PROP_END_OF_LIST(),
3554 };
3555 
3556 static void rtl8139_class_init(ObjectClass *klass, void *data)
3557 {
3558     DeviceClass *dc = DEVICE_CLASS(klass);
3559     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
3560 
3561     k->init = pci_rtl8139_init;
3562     k->exit = pci_rtl8139_uninit;
3563     k->romfile = "efi-rtl8139.rom";
3564     k->vendor_id = PCI_VENDOR_ID_REALTEK;
3565     k->device_id = PCI_DEVICE_ID_REALTEK_8139;
3566     k->revision = RTL8139_PCI_REVID; /* >=0x20 is for 8139C+ */
3567     k->class_id = PCI_CLASS_NETWORK_ETHERNET;
3568     dc->reset = rtl8139_reset;
3569     dc->vmsd = &vmstate_rtl8139;
3570     dc->props = rtl8139_properties;
3571     set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
3572 }
3573 
3574 static const TypeInfo rtl8139_info = {
3575     .name          = TYPE_RTL8139,
3576     .parent        = TYPE_PCI_DEVICE,
3577     .instance_size = sizeof(RTL8139State),
3578     .class_init    = rtl8139_class_init,
3579 };
3580 
3581 static void rtl8139_register_types(void)
3582 {
3583     type_register_static(&rtl8139_info);
3584 }
3585 
3586 type_init(rtl8139_register_types)
3587