xref: /qemu/include/fpu/softfloat.h (revision 34f0c0a9)
1 /*
2  * QEMU float support
3  *
4  * The code in this source file is derived from release 2a of the SoftFloat
5  * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
6  * some later contributions) are provided under that license, as detailed below.
7  * It has subsequently been modified by contributors to the QEMU Project,
8  * so some portions are provided under:
9  *  the SoftFloat-2a license
10  *  the BSD license
11  *  GPL-v2-or-later
12  *
13  * Any future contributions to this file after December 1st 2014 will be
14  * taken to be licensed under the Softfloat-2a license unless specifically
15  * indicated otherwise.
16  */
17 
18 /*
19 ===============================================================================
20 This C header file is part of the SoftFloat IEC/IEEE Floating-point
21 Arithmetic Package, Release 2a.
22 
23 Written by John R. Hauser.  This work was made possible in part by the
24 International Computer Science Institute, located at Suite 600, 1947 Center
25 Street, Berkeley, California 94704.  Funding was partially provided by the
26 National Science Foundation under grant MIP-9311980.  The original version
27 of this code was written as part of a project to build a fixed-point vector
28 processor in collaboration with the University of California at Berkeley,
29 overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
30 is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
31 arithmetic/SoftFloat.html'.
32 
33 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
34 has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
35 TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
36 PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
37 AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
38 
39 Derivative works are acceptable, even for commercial purposes, so long as
40 (1) they include prominent notice that the work is derivative, and (2) they
41 include prominent notice akin to these four paragraphs for those parts of
42 this code that are retained.
43 
44 ===============================================================================
45 */
46 
47 /* BSD licensing:
48  * Copyright (c) 2006, Fabrice Bellard
49  * All rights reserved.
50  *
51  * Redistribution and use in source and binary forms, with or without
52  * modification, are permitted provided that the following conditions are met:
53  *
54  * 1. Redistributions of source code must retain the above copyright notice,
55  * this list of conditions and the following disclaimer.
56  *
57  * 2. Redistributions in binary form must reproduce the above copyright notice,
58  * this list of conditions and the following disclaimer in the documentation
59  * and/or other materials provided with the distribution.
60  *
61  * 3. Neither the name of the copyright holder nor the names of its contributors
62  * may be used to endorse or promote products derived from this software without
63  * specific prior written permission.
64  *
65  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
66  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
69  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
70  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
71  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
72  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
73  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
74  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
75  * THE POSSIBILITY OF SUCH DAMAGE.
76  */
77 
78 /* Portions of this work are licensed under the terms of the GNU GPL,
79  * version 2 or later. See the COPYING file in the top-level directory.
80  */
81 
82 #ifndef SOFTFLOAT_H
83 #define SOFTFLOAT_H
84 
85 /*----------------------------------------------------------------------------
86 | Software IEC/IEEE floating-point ordering relations
87 *----------------------------------------------------------------------------*/
88 
89 typedef enum {
90     float_relation_less      = -1,
91     float_relation_equal     =  0,
92     float_relation_greater   =  1,
93     float_relation_unordered =  2
94 } FloatRelation;
95 
96 #include "fpu/softfloat-types.h"
97 #include "fpu/softfloat-helpers.h"
98 
99 /*----------------------------------------------------------------------------
100 | Routine to raise any or all of the software IEC/IEEE floating-point
101 | exception flags.
102 *----------------------------------------------------------------------------*/
103 void float_raise(uint8_t flags, float_status *status);
104 
105 /*----------------------------------------------------------------------------
106 | If `a' is denormal and we are in flush-to-zero mode then set the
107 | input-denormal exception and return zero. Otherwise just return the value.
108 *----------------------------------------------------------------------------*/
109 float16 float16_squash_input_denormal(float16 a, float_status *status);
110 float32 float32_squash_input_denormal(float32 a, float_status *status);
111 float64 float64_squash_input_denormal(float64 a, float_status *status);
112 bfloat16 bfloat16_squash_input_denormal(bfloat16 a, float_status *status);
113 
114 /*----------------------------------------------------------------------------
115 | Options to indicate which negations to perform in float*_muladd()
116 | Using these differs from negating an input or output before calling
117 | the muladd function in that this means that a NaN doesn't have its
118 | sign bit inverted before it is propagated.
119 | We also support halving the result before rounding, as a special
120 | case to support the ARM fused-sqrt-step instruction FRSQRTS.
121 *----------------------------------------------------------------------------*/
122 enum {
123     float_muladd_negate_c = 1,
124     float_muladd_negate_product = 2,
125     float_muladd_negate_result = 4,
126     float_muladd_halve_result = 8,
127 };
128 
129 /*----------------------------------------------------------------------------
130 | Software IEC/IEEE integer-to-floating-point conversion routines.
131 *----------------------------------------------------------------------------*/
132 
133 float16 int16_to_float16_scalbn(int16_t a, int, float_status *status);
134 float16 int32_to_float16_scalbn(int32_t a, int, float_status *status);
135 float16 int64_to_float16_scalbn(int64_t a, int, float_status *status);
136 float16 uint16_to_float16_scalbn(uint16_t a, int, float_status *status);
137 float16 uint32_to_float16_scalbn(uint32_t a, int, float_status *status);
138 float16 uint64_to_float16_scalbn(uint64_t a, int, float_status *status);
139 
140 float16 int8_to_float16(int8_t a, float_status *status);
141 float16 int16_to_float16(int16_t a, float_status *status);
142 float16 int32_to_float16(int32_t a, float_status *status);
143 float16 int64_to_float16(int64_t a, float_status *status);
144 float16 uint8_to_float16(uint8_t a, float_status *status);
145 float16 uint16_to_float16(uint16_t a, float_status *status);
146 float16 uint32_to_float16(uint32_t a, float_status *status);
147 float16 uint64_to_float16(uint64_t a, float_status *status);
148 
149 float32 int16_to_float32_scalbn(int16_t, int, float_status *status);
150 float32 int32_to_float32_scalbn(int32_t, int, float_status *status);
151 float32 int64_to_float32_scalbn(int64_t, int, float_status *status);
152 float32 uint16_to_float32_scalbn(uint16_t, int, float_status *status);
153 float32 uint32_to_float32_scalbn(uint32_t, int, float_status *status);
154 float32 uint64_to_float32_scalbn(uint64_t, int, float_status *status);
155 
156 float32 int16_to_float32(int16_t, float_status *status);
157 float32 int32_to_float32(int32_t, float_status *status);
158 float32 int64_to_float32(int64_t, float_status *status);
159 float32 uint16_to_float32(uint16_t, float_status *status);
160 float32 uint32_to_float32(uint32_t, float_status *status);
161 float32 uint64_to_float32(uint64_t, float_status *status);
162 
163 float64 int16_to_float64_scalbn(int16_t, int, float_status *status);
164 float64 int32_to_float64_scalbn(int32_t, int, float_status *status);
165 float64 int64_to_float64_scalbn(int64_t, int, float_status *status);
166 float64 uint16_to_float64_scalbn(uint16_t, int, float_status *status);
167 float64 uint32_to_float64_scalbn(uint32_t, int, float_status *status);
168 float64 uint64_to_float64_scalbn(uint64_t, int, float_status *status);
169 
170 float64 int16_to_float64(int16_t, float_status *status);
171 float64 int32_to_float64(int32_t, float_status *status);
172 float64 int64_to_float64(int64_t, float_status *status);
173 float64 uint16_to_float64(uint16_t, float_status *status);
174 float64 uint32_to_float64(uint32_t, float_status *status);
175 float64 uint64_to_float64(uint64_t, float_status *status);
176 
177 floatx80 int32_to_floatx80(int32_t, float_status *status);
178 floatx80 int64_to_floatx80(int64_t, float_status *status);
179 
180 float128 int32_to_float128(int32_t, float_status *status);
181 float128 int64_to_float128(int64_t, float_status *status);
182 float128 uint64_to_float128(uint64_t, float_status *status);
183 
184 /*----------------------------------------------------------------------------
185 | Software half-precision conversion routines.
186 *----------------------------------------------------------------------------*/
187 
188 float16 float32_to_float16(float32, bool ieee, float_status *status);
189 float32 float16_to_float32(float16, bool ieee, float_status *status);
190 float16 float64_to_float16(float64 a, bool ieee, float_status *status);
191 float64 float16_to_float64(float16 a, bool ieee, float_status *status);
192 
193 int8_t  float16_to_int8_scalbn(float16, FloatRoundMode, int,
194                                float_status *status);
195 int16_t float16_to_int16_scalbn(float16, FloatRoundMode, int, float_status *);
196 int32_t float16_to_int32_scalbn(float16, FloatRoundMode, int, float_status *);
197 int64_t float16_to_int64_scalbn(float16, FloatRoundMode, int, float_status *);
198 
199 int8_t  float16_to_int8(float16, float_status *status);
200 int16_t float16_to_int16(float16, float_status *status);
201 int32_t float16_to_int32(float16, float_status *status);
202 int64_t float16_to_int64(float16, float_status *status);
203 
204 int16_t float16_to_int16_round_to_zero(float16, float_status *status);
205 int32_t float16_to_int32_round_to_zero(float16, float_status *status);
206 int64_t float16_to_int64_round_to_zero(float16, float_status *status);
207 
208 uint8_t float16_to_uint8_scalbn(float16 a, FloatRoundMode,
209                                 int, float_status *status);
210 uint16_t float16_to_uint16_scalbn(float16 a, FloatRoundMode,
211                                   int, float_status *status);
212 uint32_t float16_to_uint32_scalbn(float16 a, FloatRoundMode,
213                                   int, float_status *status);
214 uint64_t float16_to_uint64_scalbn(float16 a, FloatRoundMode,
215                                   int, float_status *status);
216 
217 uint8_t  float16_to_uint8(float16 a, float_status *status);
218 uint16_t float16_to_uint16(float16 a, float_status *status);
219 uint32_t float16_to_uint32(float16 a, float_status *status);
220 uint64_t float16_to_uint64(float16 a, float_status *status);
221 
222 uint16_t float16_to_uint16_round_to_zero(float16 a, float_status *status);
223 uint32_t float16_to_uint32_round_to_zero(float16 a, float_status *status);
224 uint64_t float16_to_uint64_round_to_zero(float16 a, float_status *status);
225 
226 /*----------------------------------------------------------------------------
227 | Software half-precision operations.
228 *----------------------------------------------------------------------------*/
229 
230 float16 float16_round_to_int(float16, float_status *status);
231 float16 float16_add(float16, float16, float_status *status);
232 float16 float16_sub(float16, float16, float_status *status);
233 float16 float16_mul(float16, float16, float_status *status);
234 float16 float16_muladd(float16, float16, float16, int, float_status *status);
235 float16 float16_div(float16, float16, float_status *status);
236 float16 float16_scalbn(float16, int, float_status *status);
237 float16 float16_min(float16, float16, float_status *status);
238 float16 float16_max(float16, float16, float_status *status);
239 float16 float16_minnum(float16, float16, float_status *status);
240 float16 float16_maxnum(float16, float16, float_status *status);
241 float16 float16_minnummag(float16, float16, float_status *status);
242 float16 float16_maxnummag(float16, float16, float_status *status);
243 float16 float16_sqrt(float16, float_status *status);
244 FloatRelation float16_compare(float16, float16, float_status *status);
245 FloatRelation float16_compare_quiet(float16, float16, float_status *status);
246 
247 bool float16_is_quiet_nan(float16, float_status *status);
248 bool float16_is_signaling_nan(float16, float_status *status);
249 float16 float16_silence_nan(float16, float_status *status);
250 
251 static inline bool float16_is_any_nan(float16 a)
252 {
253     return ((float16_val(a) & ~0x8000) > 0x7c00);
254 }
255 
256 static inline bool float16_is_neg(float16 a)
257 {
258     return float16_val(a) >> 15;
259 }
260 
261 static inline bool float16_is_infinity(float16 a)
262 {
263     return (float16_val(a) & 0x7fff) == 0x7c00;
264 }
265 
266 static inline bool float16_is_zero(float16 a)
267 {
268     return (float16_val(a) & 0x7fff) == 0;
269 }
270 
271 static inline bool float16_is_zero_or_denormal(float16 a)
272 {
273     return (float16_val(a) & 0x7c00) == 0;
274 }
275 
276 static inline bool float16_is_normal(float16 a)
277 {
278     return (((float16_val(a) >> 10) + 1) & 0x1f) >= 2;
279 }
280 
281 static inline float16 float16_abs(float16 a)
282 {
283     /* Note that abs does *not* handle NaN specially, nor does
284      * it flush denormal inputs to zero.
285      */
286     return make_float16(float16_val(a) & 0x7fff);
287 }
288 
289 static inline float16 float16_chs(float16 a)
290 {
291     /* Note that chs does *not* handle NaN specially, nor does
292      * it flush denormal inputs to zero.
293      */
294     return make_float16(float16_val(a) ^ 0x8000);
295 }
296 
297 static inline float16 float16_set_sign(float16 a, int sign)
298 {
299     return make_float16((float16_val(a) & 0x7fff) | (sign << 15));
300 }
301 
302 static inline bool float16_eq(float16 a, float16 b, float_status *s)
303 {
304     return float16_compare(a, b, s) == float_relation_equal;
305 }
306 
307 static inline bool float16_le(float16 a, float16 b, float_status *s)
308 {
309     return float16_compare(a, b, s) <= float_relation_equal;
310 }
311 
312 static inline bool float16_lt(float16 a, float16 b, float_status *s)
313 {
314     return float16_compare(a, b, s) < float_relation_equal;
315 }
316 
317 static inline bool float16_unordered(float16 a, float16 b, float_status *s)
318 {
319     return float16_compare(a, b, s) == float_relation_unordered;
320 }
321 
322 static inline bool float16_eq_quiet(float16 a, float16 b, float_status *s)
323 {
324     return float16_compare_quiet(a, b, s) == float_relation_equal;
325 }
326 
327 static inline bool float16_le_quiet(float16 a, float16 b, float_status *s)
328 {
329     return float16_compare_quiet(a, b, s) <= float_relation_equal;
330 }
331 
332 static inline bool float16_lt_quiet(float16 a, float16 b, float_status *s)
333 {
334     return float16_compare_quiet(a, b, s) < float_relation_equal;
335 }
336 
337 static inline bool float16_unordered_quiet(float16 a, float16 b,
338                                            float_status *s)
339 {
340     return float16_compare_quiet(a, b, s) == float_relation_unordered;
341 }
342 
343 #define float16_zero make_float16(0)
344 #define float16_half make_float16(0x3800)
345 #define float16_one make_float16(0x3c00)
346 #define float16_one_point_five make_float16(0x3e00)
347 #define float16_two make_float16(0x4000)
348 #define float16_three make_float16(0x4200)
349 #define float16_infinity make_float16(0x7c00)
350 
351 /*----------------------------------------------------------------------------
352 | Software bfloat16 conversion routines.
353 *----------------------------------------------------------------------------*/
354 
355 bfloat16 bfloat16_round_to_int(bfloat16, float_status *status);
356 bfloat16 float32_to_bfloat16(float32, float_status *status);
357 float32 bfloat16_to_float32(bfloat16, float_status *status);
358 bfloat16 float64_to_bfloat16(float64 a, float_status *status);
359 float64 bfloat16_to_float64(bfloat16 a, float_status *status);
360 
361 int16_t bfloat16_to_int16_scalbn(bfloat16, FloatRoundMode,
362                                  int, float_status *status);
363 int32_t bfloat16_to_int32_scalbn(bfloat16, FloatRoundMode,
364                                  int, float_status *status);
365 int64_t bfloat16_to_int64_scalbn(bfloat16, FloatRoundMode,
366                                  int, float_status *status);
367 
368 int16_t bfloat16_to_int16(bfloat16, float_status *status);
369 int32_t bfloat16_to_int32(bfloat16, float_status *status);
370 int64_t bfloat16_to_int64(bfloat16, float_status *status);
371 
372 int16_t bfloat16_to_int16_round_to_zero(bfloat16, float_status *status);
373 int32_t bfloat16_to_int32_round_to_zero(bfloat16, float_status *status);
374 int64_t bfloat16_to_int64_round_to_zero(bfloat16, float_status *status);
375 
376 uint16_t bfloat16_to_uint16_scalbn(bfloat16 a, FloatRoundMode,
377                                    int, float_status *status);
378 uint32_t bfloat16_to_uint32_scalbn(bfloat16 a, FloatRoundMode,
379                                    int, float_status *status);
380 uint64_t bfloat16_to_uint64_scalbn(bfloat16 a, FloatRoundMode,
381                                    int, float_status *status);
382 
383 uint16_t bfloat16_to_uint16(bfloat16 a, float_status *status);
384 uint32_t bfloat16_to_uint32(bfloat16 a, float_status *status);
385 uint64_t bfloat16_to_uint64(bfloat16 a, float_status *status);
386 
387 uint16_t bfloat16_to_uint16_round_to_zero(bfloat16 a, float_status *status);
388 uint32_t bfloat16_to_uint32_round_to_zero(bfloat16 a, float_status *status);
389 uint64_t bfloat16_to_uint64_round_to_zero(bfloat16 a, float_status *status);
390 
391 bfloat16 int16_to_bfloat16_scalbn(int16_t a, int, float_status *status);
392 bfloat16 int32_to_bfloat16_scalbn(int32_t a, int, float_status *status);
393 bfloat16 int64_to_bfloat16_scalbn(int64_t a, int, float_status *status);
394 bfloat16 uint16_to_bfloat16_scalbn(uint16_t a, int, float_status *status);
395 bfloat16 uint32_to_bfloat16_scalbn(uint32_t a, int, float_status *status);
396 bfloat16 uint64_to_bfloat16_scalbn(uint64_t a, int, float_status *status);
397 
398 bfloat16 int16_to_bfloat16(int16_t a, float_status *status);
399 bfloat16 int32_to_bfloat16(int32_t a, float_status *status);
400 bfloat16 int64_to_bfloat16(int64_t a, float_status *status);
401 bfloat16 uint16_to_bfloat16(uint16_t a, float_status *status);
402 bfloat16 uint32_to_bfloat16(uint32_t a, float_status *status);
403 bfloat16 uint64_to_bfloat16(uint64_t a, float_status *status);
404 
405 /*----------------------------------------------------------------------------
406 | Software bfloat16 operations.
407 *----------------------------------------------------------------------------*/
408 
409 bfloat16 bfloat16_add(bfloat16, bfloat16, float_status *status);
410 bfloat16 bfloat16_sub(bfloat16, bfloat16, float_status *status);
411 bfloat16 bfloat16_mul(bfloat16, bfloat16, float_status *status);
412 bfloat16 bfloat16_div(bfloat16, bfloat16, float_status *status);
413 bfloat16 bfloat16_muladd(bfloat16, bfloat16, bfloat16, int,
414                          float_status *status);
415 float16 bfloat16_scalbn(bfloat16, int, float_status *status);
416 bfloat16 bfloat16_min(bfloat16, bfloat16, float_status *status);
417 bfloat16 bfloat16_max(bfloat16, bfloat16, float_status *status);
418 bfloat16 bfloat16_minnum(bfloat16, bfloat16, float_status *status);
419 bfloat16 bfloat16_maxnum(bfloat16, bfloat16, float_status *status);
420 bfloat16 bfloat16_minnummag(bfloat16, bfloat16, float_status *status);
421 bfloat16 bfloat16_maxnummag(bfloat16, bfloat16, float_status *status);
422 bfloat16 bfloat16_sqrt(bfloat16, float_status *status);
423 FloatRelation bfloat16_compare(bfloat16, bfloat16, float_status *status);
424 FloatRelation bfloat16_compare_quiet(bfloat16, bfloat16, float_status *status);
425 
426 bfloat16 bfloat16_silence_nan(bfloat16, float_status *status);
427 bfloat16 bfloat16_default_nan(float_status *status);
428 
429 static inline bfloat16 bfloat16_set_sign(bfloat16 a, int sign)
430 {
431     return (a & 0x7fff) | (sign << 15);
432 }
433 
434 #define bfloat16_zero 0
435 #define bfloat16_half 0x3f00
436 #define bfloat16_one 0x3f80
437 #define bfloat16_one_point_five 0x3fc0
438 #define bfloat16_two 0x4000
439 #define bfloat16_three 0x4040
440 #define bfloat16_infinity 0x7f80
441 
442 /*----------------------------------------------------------------------------
443 | The pattern for a default generated half-precision NaN.
444 *----------------------------------------------------------------------------*/
445 float16 float16_default_nan(float_status *status);
446 
447 /*----------------------------------------------------------------------------
448 | Software IEC/IEEE single-precision conversion routines.
449 *----------------------------------------------------------------------------*/
450 
451 int16_t float32_to_int16_scalbn(float32, FloatRoundMode, int, float_status *);
452 int32_t float32_to_int32_scalbn(float32, FloatRoundMode, int, float_status *);
453 int64_t float32_to_int64_scalbn(float32, FloatRoundMode, int, float_status *);
454 
455 int16_t float32_to_int16(float32, float_status *status);
456 int32_t float32_to_int32(float32, float_status *status);
457 int64_t float32_to_int64(float32, float_status *status);
458 
459 int16_t float32_to_int16_round_to_zero(float32, float_status *status);
460 int32_t float32_to_int32_round_to_zero(float32, float_status *status);
461 int64_t float32_to_int64_round_to_zero(float32, float_status *status);
462 
463 uint16_t float32_to_uint16_scalbn(float32, FloatRoundMode, int, float_status *);
464 uint32_t float32_to_uint32_scalbn(float32, FloatRoundMode, int, float_status *);
465 uint64_t float32_to_uint64_scalbn(float32, FloatRoundMode, int, float_status *);
466 
467 uint16_t float32_to_uint16(float32, float_status *status);
468 uint32_t float32_to_uint32(float32, float_status *status);
469 uint64_t float32_to_uint64(float32, float_status *status);
470 
471 uint16_t float32_to_uint16_round_to_zero(float32, float_status *status);
472 uint32_t float32_to_uint32_round_to_zero(float32, float_status *status);
473 uint64_t float32_to_uint64_round_to_zero(float32, float_status *status);
474 
475 float64 float32_to_float64(float32, float_status *status);
476 floatx80 float32_to_floatx80(float32, float_status *status);
477 float128 float32_to_float128(float32, float_status *status);
478 
479 /*----------------------------------------------------------------------------
480 | Software IEC/IEEE single-precision operations.
481 *----------------------------------------------------------------------------*/
482 float32 float32_round_to_int(float32, float_status *status);
483 float32 float32_add(float32, float32, float_status *status);
484 float32 float32_sub(float32, float32, float_status *status);
485 float32 float32_mul(float32, float32, float_status *status);
486 float32 float32_div(float32, float32, float_status *status);
487 float32 float32_rem(float32, float32, float_status *status);
488 float32 float32_muladd(float32, float32, float32, int, float_status *status);
489 float32 float32_sqrt(float32, float_status *status);
490 float32 float32_exp2(float32, float_status *status);
491 float32 float32_log2(float32, float_status *status);
492 FloatRelation float32_compare(float32, float32, float_status *status);
493 FloatRelation float32_compare_quiet(float32, float32, float_status *status);
494 float32 float32_min(float32, float32, float_status *status);
495 float32 float32_max(float32, float32, float_status *status);
496 float32 float32_minnum(float32, float32, float_status *status);
497 float32 float32_maxnum(float32, float32, float_status *status);
498 float32 float32_minnummag(float32, float32, float_status *status);
499 float32 float32_maxnummag(float32, float32, float_status *status);
500 bool float32_is_quiet_nan(float32, float_status *status);
501 bool float32_is_signaling_nan(float32, float_status *status);
502 float32 float32_silence_nan(float32, float_status *status);
503 float32 float32_scalbn(float32, int, float_status *status);
504 
505 static inline float32 float32_abs(float32 a)
506 {
507     /* Note that abs does *not* handle NaN specially, nor does
508      * it flush denormal inputs to zero.
509      */
510     return make_float32(float32_val(a) & 0x7fffffff);
511 }
512 
513 static inline float32 float32_chs(float32 a)
514 {
515     /* Note that chs does *not* handle NaN specially, nor does
516      * it flush denormal inputs to zero.
517      */
518     return make_float32(float32_val(a) ^ 0x80000000);
519 }
520 
521 static inline bool float32_is_infinity(float32 a)
522 {
523     return (float32_val(a) & 0x7fffffff) == 0x7f800000;
524 }
525 
526 static inline bool float32_is_neg(float32 a)
527 {
528     return float32_val(a) >> 31;
529 }
530 
531 static inline bool float32_is_zero(float32 a)
532 {
533     return (float32_val(a) & 0x7fffffff) == 0;
534 }
535 
536 static inline bool float32_is_any_nan(float32 a)
537 {
538     return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL);
539 }
540 
541 static inline bool float32_is_zero_or_denormal(float32 a)
542 {
543     return (float32_val(a) & 0x7f800000) == 0;
544 }
545 
546 static inline bool float32_is_normal(float32 a)
547 {
548     return (((float32_val(a) >> 23) + 1) & 0xff) >= 2;
549 }
550 
551 static inline bool float32_is_denormal(float32 a)
552 {
553     return float32_is_zero_or_denormal(a) && !float32_is_zero(a);
554 }
555 
556 static inline bool float32_is_zero_or_normal(float32 a)
557 {
558     return float32_is_normal(a) || float32_is_zero(a);
559 }
560 
561 static inline float32 float32_set_sign(float32 a, int sign)
562 {
563     return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31));
564 }
565 
566 static inline bool float32_eq(float32 a, float32 b, float_status *s)
567 {
568     return float32_compare(a, b, s) == float_relation_equal;
569 }
570 
571 static inline bool float32_le(float32 a, float32 b, float_status *s)
572 {
573     return float32_compare(a, b, s) <= float_relation_equal;
574 }
575 
576 static inline bool float32_lt(float32 a, float32 b, float_status *s)
577 {
578     return float32_compare(a, b, s) < float_relation_equal;
579 }
580 
581 static inline bool float32_unordered(float32 a, float32 b, float_status *s)
582 {
583     return float32_compare(a, b, s) == float_relation_unordered;
584 }
585 
586 static inline bool float32_eq_quiet(float32 a, float32 b, float_status *s)
587 {
588     return float32_compare_quiet(a, b, s) == float_relation_equal;
589 }
590 
591 static inline bool float32_le_quiet(float32 a, float32 b, float_status *s)
592 {
593     return float32_compare_quiet(a, b, s) <= float_relation_equal;
594 }
595 
596 static inline bool float32_lt_quiet(float32 a, float32 b, float_status *s)
597 {
598     return float32_compare_quiet(a, b, s) < float_relation_equal;
599 }
600 
601 static inline bool float32_unordered_quiet(float32 a, float32 b,
602                                            float_status *s)
603 {
604     return float32_compare_quiet(a, b, s) == float_relation_unordered;
605 }
606 
607 #define float32_zero make_float32(0)
608 #define float32_half make_float32(0x3f000000)
609 #define float32_one make_float32(0x3f800000)
610 #define float32_one_point_five make_float32(0x3fc00000)
611 #define float32_two make_float32(0x40000000)
612 #define float32_three make_float32(0x40400000)
613 #define float32_infinity make_float32(0x7f800000)
614 
615 /*----------------------------------------------------------------------------
616 | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
617 | single-precision floating-point value, returning the result.  After being
618 | shifted into the proper positions, the three fields are simply added
619 | together to form the result.  This means that any integer portion of `zSig'
620 | will be added into the exponent.  Since a properly normalized significand
621 | will have an integer portion equal to 1, the `zExp' input should be 1 less
622 | than the desired result exponent whenever `zSig' is a complete, normalized
623 | significand.
624 *----------------------------------------------------------------------------*/
625 
626 static inline float32 packFloat32(bool zSign, int zExp, uint32_t zSig)
627 {
628     return make_float32(
629           (((uint32_t)zSign) << 31) + (((uint32_t)zExp) << 23) + zSig);
630 }
631 
632 /*----------------------------------------------------------------------------
633 | The pattern for a default generated single-precision NaN.
634 *----------------------------------------------------------------------------*/
635 float32 float32_default_nan(float_status *status);
636 
637 /*----------------------------------------------------------------------------
638 | Software IEC/IEEE double-precision conversion routines.
639 *----------------------------------------------------------------------------*/
640 
641 int16_t float64_to_int16_scalbn(float64, FloatRoundMode, int, float_status *);
642 int32_t float64_to_int32_scalbn(float64, FloatRoundMode, int, float_status *);
643 int64_t float64_to_int64_scalbn(float64, FloatRoundMode, int, float_status *);
644 
645 int16_t float64_to_int16(float64, float_status *status);
646 int32_t float64_to_int32(float64, float_status *status);
647 int64_t float64_to_int64(float64, float_status *status);
648 
649 int16_t float64_to_int16_round_to_zero(float64, float_status *status);
650 int32_t float64_to_int32_round_to_zero(float64, float_status *status);
651 int64_t float64_to_int64_round_to_zero(float64, float_status *status);
652 
653 uint16_t float64_to_uint16_scalbn(float64, FloatRoundMode, int, float_status *);
654 uint32_t float64_to_uint32_scalbn(float64, FloatRoundMode, int, float_status *);
655 uint64_t float64_to_uint64_scalbn(float64, FloatRoundMode, int, float_status *);
656 
657 uint16_t float64_to_uint16(float64, float_status *status);
658 uint32_t float64_to_uint32(float64, float_status *status);
659 uint64_t float64_to_uint64(float64, float_status *status);
660 
661 uint16_t float64_to_uint16_round_to_zero(float64, float_status *status);
662 uint32_t float64_to_uint32_round_to_zero(float64, float_status *status);
663 uint64_t float64_to_uint64_round_to_zero(float64, float_status *status);
664 
665 float32 float64_to_float32(float64, float_status *status);
666 floatx80 float64_to_floatx80(float64, float_status *status);
667 float128 float64_to_float128(float64, float_status *status);
668 
669 /*----------------------------------------------------------------------------
670 | Software IEC/IEEE double-precision operations.
671 *----------------------------------------------------------------------------*/
672 float64 float64_round_to_int(float64, float_status *status);
673 float64 float64_add(float64, float64, float_status *status);
674 float64 float64_sub(float64, float64, float_status *status);
675 float64 float64_mul(float64, float64, float_status *status);
676 float64 float64_div(float64, float64, float_status *status);
677 float64 float64_rem(float64, float64, float_status *status);
678 float64 float64_muladd(float64, float64, float64, int, float_status *status);
679 float64 float64_sqrt(float64, float_status *status);
680 float64 float64_log2(float64, float_status *status);
681 FloatRelation float64_compare(float64, float64, float_status *status);
682 FloatRelation float64_compare_quiet(float64, float64, float_status *status);
683 float64 float64_min(float64, float64, float_status *status);
684 float64 float64_max(float64, float64, float_status *status);
685 float64 float64_minnum(float64, float64, float_status *status);
686 float64 float64_maxnum(float64, float64, float_status *status);
687 float64 float64_minnummag(float64, float64, float_status *status);
688 float64 float64_maxnummag(float64, float64, float_status *status);
689 bool float64_is_quiet_nan(float64 a, float_status *status);
690 bool float64_is_signaling_nan(float64, float_status *status);
691 float64 float64_silence_nan(float64, float_status *status);
692 float64 float64_scalbn(float64, int, float_status *status);
693 
694 static inline float64 float64_abs(float64 a)
695 {
696     /* Note that abs does *not* handle NaN specially, nor does
697      * it flush denormal inputs to zero.
698      */
699     return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
700 }
701 
702 static inline float64 float64_chs(float64 a)
703 {
704     /* Note that chs does *not* handle NaN specially, nor does
705      * it flush denormal inputs to zero.
706      */
707     return make_float64(float64_val(a) ^ 0x8000000000000000LL);
708 }
709 
710 static inline bool float64_is_infinity(float64 a)
711 {
712     return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
713 }
714 
715 static inline bool float64_is_neg(float64 a)
716 {
717     return float64_val(a) >> 63;
718 }
719 
720 static inline bool float64_is_zero(float64 a)
721 {
722     return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
723 }
724 
725 static inline bool float64_is_any_nan(float64 a)
726 {
727     return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL);
728 }
729 
730 static inline bool float64_is_zero_or_denormal(float64 a)
731 {
732     return (float64_val(a) & 0x7ff0000000000000LL) == 0;
733 }
734 
735 static inline bool float64_is_normal(float64 a)
736 {
737     return (((float64_val(a) >> 52) + 1) & 0x7ff) >= 2;
738 }
739 
740 static inline bool float64_is_denormal(float64 a)
741 {
742     return float64_is_zero_or_denormal(a) && !float64_is_zero(a);
743 }
744 
745 static inline bool float64_is_zero_or_normal(float64 a)
746 {
747     return float64_is_normal(a) || float64_is_zero(a);
748 }
749 
750 static inline float64 float64_set_sign(float64 a, int sign)
751 {
752     return make_float64((float64_val(a) & 0x7fffffffffffffffULL)
753                         | ((int64_t)sign << 63));
754 }
755 
756 static inline bool float64_eq(float64 a, float64 b, float_status *s)
757 {
758     return float64_compare(a, b, s) == float_relation_equal;
759 }
760 
761 static inline bool float64_le(float64 a, float64 b, float_status *s)
762 {
763     return float64_compare(a, b, s) <= float_relation_equal;
764 }
765 
766 static inline bool float64_lt(float64 a, float64 b, float_status *s)
767 {
768     return float64_compare(a, b, s) < float_relation_equal;
769 }
770 
771 static inline bool float64_unordered(float64 a, float64 b, float_status *s)
772 {
773     return float64_compare(a, b, s) == float_relation_unordered;
774 }
775 
776 static inline bool float64_eq_quiet(float64 a, float64 b, float_status *s)
777 {
778     return float64_compare_quiet(a, b, s) == float_relation_equal;
779 }
780 
781 static inline bool float64_le_quiet(float64 a, float64 b, float_status *s)
782 {
783     return float64_compare_quiet(a, b, s) <= float_relation_equal;
784 }
785 
786 static inline bool float64_lt_quiet(float64 a, float64 b, float_status *s)
787 {
788     return float64_compare_quiet(a, b, s) < float_relation_equal;
789 }
790 
791 static inline bool float64_unordered_quiet(float64 a, float64 b,
792                                            float_status *s)
793 {
794     return float64_compare_quiet(a, b, s) == float_relation_unordered;
795 }
796 
797 #define float64_zero make_float64(0)
798 #define float64_half make_float64(0x3fe0000000000000LL)
799 #define float64_one make_float64(0x3ff0000000000000LL)
800 #define float64_one_point_five make_float64(0x3FF8000000000000ULL)
801 #define float64_two make_float64(0x4000000000000000ULL)
802 #define float64_three make_float64(0x4008000000000000ULL)
803 #define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
804 #define float64_infinity make_float64(0x7ff0000000000000LL)
805 
806 /*----------------------------------------------------------------------------
807 | The pattern for a default generated double-precision NaN.
808 *----------------------------------------------------------------------------*/
809 float64 float64_default_nan(float_status *status);
810 
811 /*----------------------------------------------------------------------------
812 | Software IEC/IEEE extended double-precision conversion routines.
813 *----------------------------------------------------------------------------*/
814 int32_t floatx80_to_int32(floatx80, float_status *status);
815 int32_t floatx80_to_int32_round_to_zero(floatx80, float_status *status);
816 int64_t floatx80_to_int64(floatx80, float_status *status);
817 int64_t floatx80_to_int64_round_to_zero(floatx80, float_status *status);
818 float32 floatx80_to_float32(floatx80, float_status *status);
819 float64 floatx80_to_float64(floatx80, float_status *status);
820 float128 floatx80_to_float128(floatx80, float_status *status);
821 
822 /*----------------------------------------------------------------------------
823 | The pattern for an extended double-precision inf.
824 *----------------------------------------------------------------------------*/
825 extern const floatx80 floatx80_infinity;
826 
827 /*----------------------------------------------------------------------------
828 | Software IEC/IEEE extended double-precision operations.
829 *----------------------------------------------------------------------------*/
830 floatx80 floatx80_round(floatx80 a, float_status *status);
831 floatx80 floatx80_round_to_int(floatx80, float_status *status);
832 floatx80 floatx80_add(floatx80, floatx80, float_status *status);
833 floatx80 floatx80_sub(floatx80, floatx80, float_status *status);
834 floatx80 floatx80_mul(floatx80, floatx80, float_status *status);
835 floatx80 floatx80_div(floatx80, floatx80, float_status *status);
836 floatx80 floatx80_modrem(floatx80, floatx80, bool, uint64_t *,
837                          float_status *status);
838 floatx80 floatx80_mod(floatx80, floatx80, float_status *status);
839 floatx80 floatx80_rem(floatx80, floatx80, float_status *status);
840 floatx80 floatx80_sqrt(floatx80, float_status *status);
841 FloatRelation floatx80_compare(floatx80, floatx80, float_status *status);
842 FloatRelation floatx80_compare_quiet(floatx80, floatx80, float_status *status);
843 int floatx80_is_quiet_nan(floatx80, float_status *status);
844 int floatx80_is_signaling_nan(floatx80, float_status *status);
845 floatx80 floatx80_silence_nan(floatx80, float_status *status);
846 floatx80 floatx80_scalbn(floatx80, int, float_status *status);
847 
848 static inline floatx80 floatx80_abs(floatx80 a)
849 {
850     a.high &= 0x7fff;
851     return a;
852 }
853 
854 static inline floatx80 floatx80_chs(floatx80 a)
855 {
856     a.high ^= 0x8000;
857     return a;
858 }
859 
860 static inline bool floatx80_is_infinity(floatx80 a)
861 {
862 #if defined(TARGET_M68K)
863     return (a.high & 0x7fff) == floatx80_infinity.high && !(a.low << 1);
864 #else
865     return (a.high & 0x7fff) == floatx80_infinity.high &&
866                        a.low == floatx80_infinity.low;
867 #endif
868 }
869 
870 static inline bool floatx80_is_neg(floatx80 a)
871 {
872     return a.high >> 15;
873 }
874 
875 static inline bool floatx80_is_zero(floatx80 a)
876 {
877     return (a.high & 0x7fff) == 0 && a.low == 0;
878 }
879 
880 static inline bool floatx80_is_zero_or_denormal(floatx80 a)
881 {
882     return (a.high & 0x7fff) == 0;
883 }
884 
885 static inline bool floatx80_is_any_nan(floatx80 a)
886 {
887     return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1);
888 }
889 
890 static inline bool floatx80_eq(floatx80 a, floatx80 b, float_status *s)
891 {
892     return floatx80_compare(a, b, s) == float_relation_equal;
893 }
894 
895 static inline bool floatx80_le(floatx80 a, floatx80 b, float_status *s)
896 {
897     return floatx80_compare(a, b, s) <= float_relation_equal;
898 }
899 
900 static inline bool floatx80_lt(floatx80 a, floatx80 b, float_status *s)
901 {
902     return floatx80_compare(a, b, s) < float_relation_equal;
903 }
904 
905 static inline bool floatx80_unordered(floatx80 a, floatx80 b, float_status *s)
906 {
907     return floatx80_compare(a, b, s) == float_relation_unordered;
908 }
909 
910 static inline bool floatx80_eq_quiet(floatx80 a, floatx80 b, float_status *s)
911 {
912     return floatx80_compare_quiet(a, b, s) == float_relation_equal;
913 }
914 
915 static inline bool floatx80_le_quiet(floatx80 a, floatx80 b, float_status *s)
916 {
917     return floatx80_compare_quiet(a, b, s) <= float_relation_equal;
918 }
919 
920 static inline bool floatx80_lt_quiet(floatx80 a, floatx80 b, float_status *s)
921 {
922     return floatx80_compare_quiet(a, b, s) < float_relation_equal;
923 }
924 
925 static inline bool floatx80_unordered_quiet(floatx80 a, floatx80 b,
926                                            float_status *s)
927 {
928     return floatx80_compare_quiet(a, b, s) == float_relation_unordered;
929 }
930 
931 /*----------------------------------------------------------------------------
932 | Return whether the given value is an invalid floatx80 encoding.
933 | Invalid floatx80 encodings arise when the integer bit is not set, but
934 | the exponent is not zero. The only times the integer bit is permitted to
935 | be zero is in subnormal numbers and the value zero.
936 | This includes what the Intel software developer's manual calls pseudo-NaNs,
937 | pseudo-infinities and un-normal numbers. It does not include
938 | pseudo-denormals, which must still be correctly handled as inputs even
939 | if they are never generated as outputs.
940 *----------------------------------------------------------------------------*/
941 static inline bool floatx80_invalid_encoding(floatx80 a)
942 {
943 #if defined(TARGET_M68K)
944     /*-------------------------------------------------------------------------
945     | With m68k, the explicit integer bit can be zero in the case of:
946     | - zeros                (exp == 0, mantissa == 0)
947     | - denormalized numbers (exp == 0, mantissa != 0)
948     | - unnormalized numbers (exp != 0, exp < 0x7FFF)
949     | - infinities           (exp == 0x7FFF, mantissa == 0)
950     | - not-a-numbers        (exp == 0x7FFF, mantissa != 0)
951     |
952     | For infinities and NaNs, the explicit integer bit can be either one or
953     | zero.
954     |
955     | The IEEE 754 standard does not define a zero integer bit. Such a number
956     | is an unnormalized number. Hardware does not directly support
957     | denormalized and unnormalized numbers, but implicitly supports them by
958     | trapping them as unimplemented data types, allowing efficient conversion
959     | in software.
960     |
961     | See "M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL",
962     |     "1.6 FLOATING-POINT DATA TYPES"
963     *------------------------------------------------------------------------*/
964     return false;
965 #else
966     return (a.low & (1ULL << 63)) == 0 && (a.high & 0x7FFF) != 0;
967 #endif
968 }
969 
970 #define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL)
971 #define floatx80_zero_init make_floatx80_init(0x0000, 0x0000000000000000LL)
972 #define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL)
973 #define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL)
974 #define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL)
975 #define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL)
976 
977 /*----------------------------------------------------------------------------
978 | Returns the fraction bits of the extended double-precision floating-point
979 | value `a'.
980 *----------------------------------------------------------------------------*/
981 
982 static inline uint64_t extractFloatx80Frac(floatx80 a)
983 {
984     return a.low;
985 }
986 
987 /*----------------------------------------------------------------------------
988 | Returns the exponent bits of the extended double-precision floating-point
989 | value `a'.
990 *----------------------------------------------------------------------------*/
991 
992 static inline int32_t extractFloatx80Exp(floatx80 a)
993 {
994     return a.high & 0x7FFF;
995 }
996 
997 /*----------------------------------------------------------------------------
998 | Returns the sign bit of the extended double-precision floating-point value
999 | `a'.
1000 *----------------------------------------------------------------------------*/
1001 
1002 static inline bool extractFloatx80Sign(floatx80 a)
1003 {
1004     return a.high >> 15;
1005 }
1006 
1007 /*----------------------------------------------------------------------------
1008 | Packs the sign `zSign', exponent `zExp', and significand `zSig' into an
1009 | extended double-precision floating-point value, returning the result.
1010 *----------------------------------------------------------------------------*/
1011 
1012 static inline floatx80 packFloatx80(bool zSign, int32_t zExp, uint64_t zSig)
1013 {
1014     floatx80 z;
1015 
1016     z.low = zSig;
1017     z.high = (((uint16_t)zSign) << 15) + zExp;
1018     return z;
1019 }
1020 
1021 /*----------------------------------------------------------------------------
1022 | Normalizes the subnormal extended double-precision floating-point value
1023 | represented by the denormalized significand `aSig'.  The normalized exponent
1024 | and significand are stored at the locations pointed to by `zExpPtr' and
1025 | `zSigPtr', respectively.
1026 *----------------------------------------------------------------------------*/
1027 
1028 void normalizeFloatx80Subnormal(uint64_t aSig, int32_t *zExpPtr,
1029                                 uint64_t *zSigPtr);
1030 
1031 /*----------------------------------------------------------------------------
1032 | Takes two extended double-precision floating-point values `a' and `b', one
1033 | of which is a NaN, and returns the appropriate NaN result.  If either `a' or
1034 | `b' is a signaling NaN, the invalid exception is raised.
1035 *----------------------------------------------------------------------------*/
1036 
1037 floatx80 propagateFloatx80NaN(floatx80 a, floatx80 b, float_status *status);
1038 
1039 /*----------------------------------------------------------------------------
1040 | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
1041 | and extended significand formed by the concatenation of `zSig0' and `zSig1',
1042 | and returns the proper extended double-precision floating-point value
1043 | corresponding to the abstract input.  Ordinarily, the abstract value is
1044 | rounded and packed into the extended double-precision format, with the
1045 | inexact exception raised if the abstract input cannot be represented
1046 | exactly.  However, if the abstract value is too large, the overflow and
1047 | inexact exceptions are raised and an infinity or maximal finite value is
1048 | returned.  If the abstract value is too small, the input value is rounded to
1049 | a subnormal number, and the underflow and inexact exceptions are raised if
1050 | the abstract input cannot be represented exactly as a subnormal extended
1051 | double-precision floating-point number.
1052 |     If `roundingPrecision' is 32 or 64, the result is rounded to the same
1053 | number of bits as single or double precision, respectively.  Otherwise, the
1054 | result is rounded to the full precision of the extended double-precision
1055 | format.
1056 |     The input significand must be normalized or smaller.  If the input
1057 | significand is not normalized, `zExp' must be 0; in that case, the result
1058 | returned is a subnormal number, and it must not require rounding.  The
1059 | handling of underflow and overflow follows the IEC/IEEE Standard for Binary
1060 | Floating-Point Arithmetic.
1061 *----------------------------------------------------------------------------*/
1062 
1063 floatx80 roundAndPackFloatx80(int8_t roundingPrecision, bool zSign,
1064                               int32_t zExp, uint64_t zSig0, uint64_t zSig1,
1065                               float_status *status);
1066 
1067 /*----------------------------------------------------------------------------
1068 | Takes an abstract floating-point value having sign `zSign', exponent
1069 | `zExp', and significand formed by the concatenation of `zSig0' and `zSig1',
1070 | and returns the proper extended double-precision floating-point value
1071 | corresponding to the abstract input.  This routine is just like
1072 | `roundAndPackFloatx80' except that the input significand does not have to be
1073 | normalized.
1074 *----------------------------------------------------------------------------*/
1075 
1076 floatx80 normalizeRoundAndPackFloatx80(int8_t roundingPrecision,
1077                                        bool zSign, int32_t zExp,
1078                                        uint64_t zSig0, uint64_t zSig1,
1079                                        float_status *status);
1080 
1081 /*----------------------------------------------------------------------------
1082 | The pattern for a default generated extended double-precision NaN.
1083 *----------------------------------------------------------------------------*/
1084 floatx80 floatx80_default_nan(float_status *status);
1085 
1086 /*----------------------------------------------------------------------------
1087 | Software IEC/IEEE quadruple-precision conversion routines.
1088 *----------------------------------------------------------------------------*/
1089 int32_t float128_to_int32(float128, float_status *status);
1090 int32_t float128_to_int32_round_to_zero(float128, float_status *status);
1091 int64_t float128_to_int64(float128, float_status *status);
1092 int64_t float128_to_int64_round_to_zero(float128, float_status *status);
1093 uint64_t float128_to_uint64(float128, float_status *status);
1094 uint64_t float128_to_uint64_round_to_zero(float128, float_status *status);
1095 uint32_t float128_to_uint32(float128, float_status *status);
1096 uint32_t float128_to_uint32_round_to_zero(float128, float_status *status);
1097 float32 float128_to_float32(float128, float_status *status);
1098 float64 float128_to_float64(float128, float_status *status);
1099 floatx80 float128_to_floatx80(float128, float_status *status);
1100 
1101 /*----------------------------------------------------------------------------
1102 | Software IEC/IEEE quadruple-precision operations.
1103 *----------------------------------------------------------------------------*/
1104 float128 float128_round_to_int(float128, float_status *status);
1105 float128 float128_add(float128, float128, float_status *status);
1106 float128 float128_sub(float128, float128, float_status *status);
1107 float128 float128_mul(float128, float128, float_status *status);
1108 float128 float128_div(float128, float128, float_status *status);
1109 float128 float128_rem(float128, float128, float_status *status);
1110 float128 float128_sqrt(float128, float_status *status);
1111 FloatRelation float128_compare(float128, float128, float_status *status);
1112 FloatRelation float128_compare_quiet(float128, float128, float_status *status);
1113 bool float128_is_quiet_nan(float128, float_status *status);
1114 bool float128_is_signaling_nan(float128, float_status *status);
1115 float128 float128_silence_nan(float128, float_status *status);
1116 float128 float128_scalbn(float128, int, float_status *status);
1117 
1118 static inline float128 float128_abs(float128 a)
1119 {
1120     a.high &= 0x7fffffffffffffffLL;
1121     return a;
1122 }
1123 
1124 static inline float128 float128_chs(float128 a)
1125 {
1126     a.high ^= 0x8000000000000000LL;
1127     return a;
1128 }
1129 
1130 static inline bool float128_is_infinity(float128 a)
1131 {
1132     return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
1133 }
1134 
1135 static inline bool float128_is_neg(float128 a)
1136 {
1137     return a.high >> 63;
1138 }
1139 
1140 static inline bool float128_is_zero(float128 a)
1141 {
1142     return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
1143 }
1144 
1145 static inline bool float128_is_zero_or_denormal(float128 a)
1146 {
1147     return (a.high & 0x7fff000000000000LL) == 0;
1148 }
1149 
1150 static inline bool float128_is_normal(float128 a)
1151 {
1152     return (((a.high >> 48) + 1) & 0x7fff) >= 2;
1153 }
1154 
1155 static inline bool float128_is_denormal(float128 a)
1156 {
1157     return float128_is_zero_or_denormal(a) && !float128_is_zero(a);
1158 }
1159 
1160 static inline bool float128_is_any_nan(float128 a)
1161 {
1162     return ((a.high >> 48) & 0x7fff) == 0x7fff &&
1163         ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0));
1164 }
1165 
1166 static inline bool float128_eq(float128 a, float128 b, float_status *s)
1167 {
1168     return float128_compare(a, b, s) == float_relation_equal;
1169 }
1170 
1171 static inline bool float128_le(float128 a, float128 b, float_status *s)
1172 {
1173     return float128_compare(a, b, s) <= float_relation_equal;
1174 }
1175 
1176 static inline bool float128_lt(float128 a, float128 b, float_status *s)
1177 {
1178     return float128_compare(a, b, s) < float_relation_equal;
1179 }
1180 
1181 static inline bool float128_unordered(float128 a, float128 b, float_status *s)
1182 {
1183     return float128_compare(a, b, s) == float_relation_unordered;
1184 }
1185 
1186 static inline bool float128_eq_quiet(float128 a, float128 b, float_status *s)
1187 {
1188     return float128_compare_quiet(a, b, s) == float_relation_equal;
1189 }
1190 
1191 static inline bool float128_le_quiet(float128 a, float128 b, float_status *s)
1192 {
1193     return float128_compare_quiet(a, b, s) <= float_relation_equal;
1194 }
1195 
1196 static inline bool float128_lt_quiet(float128 a, float128 b, float_status *s)
1197 {
1198     return float128_compare_quiet(a, b, s) < float_relation_equal;
1199 }
1200 
1201 static inline bool float128_unordered_quiet(float128 a, float128 b,
1202                                            float_status *s)
1203 {
1204     return float128_compare_quiet(a, b, s) == float_relation_unordered;
1205 }
1206 
1207 #define float128_zero make_float128(0, 0)
1208 
1209 /*----------------------------------------------------------------------------
1210 | The pattern for a default generated quadruple-precision NaN.
1211 *----------------------------------------------------------------------------*/
1212 float128 float128_default_nan(float_status *status);
1213 
1214 #endif /* SOFTFLOAT_H */
1215