xref: /qemu/include/fpu/softfloat.h (revision 6402cbbb)
1 /*
2  * QEMU float support
3  *
4  * The code in this source file is derived from release 2a of the SoftFloat
5  * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
6  * some later contributions) are provided under that license, as detailed below.
7  * It has subsequently been modified by contributors to the QEMU Project,
8  * so some portions are provided under:
9  *  the SoftFloat-2a license
10  *  the BSD license
11  *  GPL-v2-or-later
12  *
13  * Any future contributions to this file after December 1st 2014 will be
14  * taken to be licensed under the Softfloat-2a license unless specifically
15  * indicated otherwise.
16  */
17 
18 /*
19 ===============================================================================
20 This C header file is part of the SoftFloat IEC/IEEE Floating-point
21 Arithmetic Package, Release 2a.
22 
23 Written by John R. Hauser.  This work was made possible in part by the
24 International Computer Science Institute, located at Suite 600, 1947 Center
25 Street, Berkeley, California 94704.  Funding was partially provided by the
26 National Science Foundation under grant MIP-9311980.  The original version
27 of this code was written as part of a project to build a fixed-point vector
28 processor in collaboration with the University of California at Berkeley,
29 overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
30 is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
31 arithmetic/SoftFloat.html'.
32 
33 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
34 has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
35 TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
36 PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
37 AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
38 
39 Derivative works are acceptable, even for commercial purposes, so long as
40 (1) they include prominent notice that the work is derivative, and (2) they
41 include prominent notice akin to these four paragraphs for those parts of
42 this code that are retained.
43 
44 ===============================================================================
45 */
46 
47 /* BSD licensing:
48  * Copyright (c) 2006, Fabrice Bellard
49  * All rights reserved.
50  *
51  * Redistribution and use in source and binary forms, with or without
52  * modification, are permitted provided that the following conditions are met:
53  *
54  * 1. Redistributions of source code must retain the above copyright notice,
55  * this list of conditions and the following disclaimer.
56  *
57  * 2. Redistributions in binary form must reproduce the above copyright notice,
58  * this list of conditions and the following disclaimer in the documentation
59  * and/or other materials provided with the distribution.
60  *
61  * 3. Neither the name of the copyright holder nor the names of its contributors
62  * may be used to endorse or promote products derived from this software without
63  * specific prior written permission.
64  *
65  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
66  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
69  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
70  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
71  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
72  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
73  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
74  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
75  * THE POSSIBILITY OF SUCH DAMAGE.
76  */
77 
78 /* Portions of this work are licensed under the terms of the GNU GPL,
79  * version 2 or later. See the COPYING file in the top-level directory.
80  */
81 
82 #ifndef SOFTFLOAT_H
83 #define SOFTFLOAT_H
84 
85 /* This 'flag' type must be able to hold at least 0 and 1. It should
86  * probably be replaced with 'bool' but the uses would need to be audited
87  * to check that they weren't accidentally relying on it being a larger type.
88  */
89 typedef uint8_t flag;
90 
91 #define LIT64( a ) a##LL
92 
93 /*----------------------------------------------------------------------------
94 | Software IEC/IEEE floating-point ordering relations
95 *----------------------------------------------------------------------------*/
96 enum {
97     float_relation_less      = -1,
98     float_relation_equal     =  0,
99     float_relation_greater   =  1,
100     float_relation_unordered =  2
101 };
102 
103 /*----------------------------------------------------------------------------
104 | Software IEC/IEEE floating-point types.
105 *----------------------------------------------------------------------------*/
106 /* Use structures for soft-float types.  This prevents accidentally mixing
107    them with native int/float types.  A sufficiently clever compiler and
108    sane ABI should be able to see though these structs.  However
109    x86/gcc 3.x seems to struggle a bit, so leave them disabled by default.  */
110 //#define USE_SOFTFLOAT_STRUCT_TYPES
111 #ifdef USE_SOFTFLOAT_STRUCT_TYPES
112 typedef struct {
113     uint16_t v;
114 } float16;
115 #define float16_val(x) (((float16)(x)).v)
116 #define make_float16(x) __extension__ ({ float16 f16_val = {x}; f16_val; })
117 #define const_float16(x) { x }
118 typedef struct {
119     uint32_t v;
120 } float32;
121 /* The cast ensures an error if the wrong type is passed.  */
122 #define float32_val(x) (((float32)(x)).v)
123 #define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; })
124 #define const_float32(x) { x }
125 typedef struct {
126     uint64_t v;
127 } float64;
128 #define float64_val(x) (((float64)(x)).v)
129 #define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; })
130 #define const_float64(x) { x }
131 #else
132 typedef uint16_t float16;
133 typedef uint32_t float32;
134 typedef uint64_t float64;
135 #define float16_val(x) (x)
136 #define float32_val(x) (x)
137 #define float64_val(x) (x)
138 #define make_float16(x) (x)
139 #define make_float32(x) (x)
140 #define make_float64(x) (x)
141 #define const_float16(x) (x)
142 #define const_float32(x) (x)
143 #define const_float64(x) (x)
144 #endif
145 typedef struct {
146     uint64_t low;
147     uint16_t high;
148 } floatx80;
149 #define make_floatx80(exp, mant) ((floatx80) { mant, exp })
150 #define make_floatx80_init(exp, mant) { .low = mant, .high = exp }
151 typedef struct {
152 #ifdef HOST_WORDS_BIGENDIAN
153     uint64_t high, low;
154 #else
155     uint64_t low, high;
156 #endif
157 } float128;
158 #define make_float128(high_, low_) ((float128) { .high = high_, .low = low_ })
159 #define make_float128_init(high_, low_) { .high = high_, .low = low_ }
160 
161 /*----------------------------------------------------------------------------
162 | Software IEC/IEEE floating-point underflow tininess-detection mode.
163 *----------------------------------------------------------------------------*/
164 enum {
165     float_tininess_after_rounding  = 0,
166     float_tininess_before_rounding = 1
167 };
168 
169 /*----------------------------------------------------------------------------
170 | Software IEC/IEEE floating-point rounding mode.
171 *----------------------------------------------------------------------------*/
172 enum {
173     float_round_nearest_even = 0,
174     float_round_down         = 1,
175     float_round_up           = 2,
176     float_round_to_zero      = 3,
177     float_round_ties_away    = 4,
178     /* Not an IEEE rounding mode: round to the closest odd mantissa value */
179     float_round_to_odd       = 5,
180 };
181 
182 /*----------------------------------------------------------------------------
183 | Software IEC/IEEE floating-point exception flags.
184 *----------------------------------------------------------------------------*/
185 enum {
186     float_flag_invalid   =  1,
187     float_flag_divbyzero =  4,
188     float_flag_overflow  =  8,
189     float_flag_underflow = 16,
190     float_flag_inexact   = 32,
191     float_flag_input_denormal = 64,
192     float_flag_output_denormal = 128
193 };
194 
195 typedef struct float_status {
196     signed char float_detect_tininess;
197     signed char float_rounding_mode;
198     uint8_t     float_exception_flags;
199     signed char floatx80_rounding_precision;
200     /* should denormalised results go to zero and set the inexact flag? */
201     flag flush_to_zero;
202     /* should denormalised inputs go to zero and set the input_denormal flag? */
203     flag flush_inputs_to_zero;
204     flag default_nan_mode;
205     flag snan_bit_is_one;
206 } float_status;
207 
208 static inline void set_float_detect_tininess(int val, float_status *status)
209 {
210     status->float_detect_tininess = val;
211 }
212 static inline void set_float_rounding_mode(int val, float_status *status)
213 {
214     status->float_rounding_mode = val;
215 }
216 static inline void set_float_exception_flags(int val, float_status *status)
217 {
218     status->float_exception_flags = val;
219 }
220 static inline void set_floatx80_rounding_precision(int val,
221                                                    float_status *status)
222 {
223     status->floatx80_rounding_precision = val;
224 }
225 static inline void set_flush_to_zero(flag val, float_status *status)
226 {
227     status->flush_to_zero = val;
228 }
229 static inline void set_flush_inputs_to_zero(flag val, float_status *status)
230 {
231     status->flush_inputs_to_zero = val;
232 }
233 static inline void set_default_nan_mode(flag val, float_status *status)
234 {
235     status->default_nan_mode = val;
236 }
237 static inline void set_snan_bit_is_one(flag val, float_status *status)
238 {
239     status->snan_bit_is_one = val;
240 }
241 static inline int get_float_detect_tininess(float_status *status)
242 {
243     return status->float_detect_tininess;
244 }
245 static inline int get_float_rounding_mode(float_status *status)
246 {
247     return status->float_rounding_mode;
248 }
249 static inline int get_float_exception_flags(float_status *status)
250 {
251     return status->float_exception_flags;
252 }
253 static inline int get_floatx80_rounding_precision(float_status *status)
254 {
255     return status->floatx80_rounding_precision;
256 }
257 static inline flag get_flush_to_zero(float_status *status)
258 {
259     return status->flush_to_zero;
260 }
261 static inline flag get_flush_inputs_to_zero(float_status *status)
262 {
263     return status->flush_inputs_to_zero;
264 }
265 static inline flag get_default_nan_mode(float_status *status)
266 {
267     return status->default_nan_mode;
268 }
269 
270 /*----------------------------------------------------------------------------
271 | Routine to raise any or all of the software IEC/IEEE floating-point
272 | exception flags.
273 *----------------------------------------------------------------------------*/
274 void float_raise(uint8_t flags, float_status *status);
275 
276 /*----------------------------------------------------------------------------
277 | If `a' is denormal and we are in flush-to-zero mode then set the
278 | input-denormal exception and return zero. Otherwise just return the value.
279 *----------------------------------------------------------------------------*/
280 float32 float32_squash_input_denormal(float32 a, float_status *status);
281 float64 float64_squash_input_denormal(float64 a, float_status *status);
282 
283 /*----------------------------------------------------------------------------
284 | Options to indicate which negations to perform in float*_muladd()
285 | Using these differs from negating an input or output before calling
286 | the muladd function in that this means that a NaN doesn't have its
287 | sign bit inverted before it is propagated.
288 | We also support halving the result before rounding, as a special
289 | case to support the ARM fused-sqrt-step instruction FRSQRTS.
290 *----------------------------------------------------------------------------*/
291 enum {
292     float_muladd_negate_c = 1,
293     float_muladd_negate_product = 2,
294     float_muladd_negate_result = 4,
295     float_muladd_halve_result = 8,
296 };
297 
298 /*----------------------------------------------------------------------------
299 | Software IEC/IEEE integer-to-floating-point conversion routines.
300 *----------------------------------------------------------------------------*/
301 float32 int32_to_float32(int32_t, float_status *status);
302 float64 int32_to_float64(int32_t, float_status *status);
303 float32 uint32_to_float32(uint32_t, float_status *status);
304 float64 uint32_to_float64(uint32_t, float_status *status);
305 floatx80 int32_to_floatx80(int32_t, float_status *status);
306 float128 int32_to_float128(int32_t, float_status *status);
307 float32 int64_to_float32(int64_t, float_status *status);
308 float64 int64_to_float64(int64_t, float_status *status);
309 floatx80 int64_to_floatx80(int64_t, float_status *status);
310 float128 int64_to_float128(int64_t, float_status *status);
311 float32 uint64_to_float32(uint64_t, float_status *status);
312 float64 uint64_to_float64(uint64_t, float_status *status);
313 float128 uint64_to_float128(uint64_t, float_status *status);
314 
315 /* We provide the int16 versions for symmetry of API with float-to-int */
316 static inline float32 int16_to_float32(int16_t v, float_status *status)
317 {
318     return int32_to_float32(v, status);
319 }
320 
321 static inline float32 uint16_to_float32(uint16_t v, float_status *status)
322 {
323     return uint32_to_float32(v, status);
324 }
325 
326 static inline float64 int16_to_float64(int16_t v, float_status *status)
327 {
328     return int32_to_float64(v, status);
329 }
330 
331 static inline float64 uint16_to_float64(uint16_t v, float_status *status)
332 {
333     return uint32_to_float64(v, status);
334 }
335 
336 /*----------------------------------------------------------------------------
337 | Software half-precision conversion routines.
338 *----------------------------------------------------------------------------*/
339 float16 float32_to_float16(float32, flag, float_status *status);
340 float32 float16_to_float32(float16, flag, float_status *status);
341 float16 float64_to_float16(float64 a, flag ieee, float_status *status);
342 float64 float16_to_float64(float16 a, flag ieee, float_status *status);
343 
344 /*----------------------------------------------------------------------------
345 | Software half-precision operations.
346 *----------------------------------------------------------------------------*/
347 int float16_is_quiet_nan(float16, float_status *status);
348 int float16_is_signaling_nan(float16, float_status *status);
349 float16 float16_maybe_silence_nan(float16, float_status *status);
350 
351 static inline int float16_is_any_nan(float16 a)
352 {
353     return ((float16_val(a) & ~0x8000) > 0x7c00);
354 }
355 
356 static inline int float16_is_neg(float16 a)
357 {
358     return float16_val(a) >> 15;
359 }
360 
361 static inline int float16_is_infinity(float16 a)
362 {
363     return (float16_val(a) & 0x7fff) == 0x7c00;
364 }
365 
366 static inline int float16_is_zero(float16 a)
367 {
368     return (float16_val(a) & 0x7fff) == 0;
369 }
370 
371 static inline int float16_is_zero_or_denormal(float16 a)
372 {
373     return (float16_val(a) & 0x7c00) == 0;
374 }
375 
376 /*----------------------------------------------------------------------------
377 | The pattern for a default generated half-precision NaN.
378 *----------------------------------------------------------------------------*/
379 float16 float16_default_nan(float_status *status);
380 
381 /*----------------------------------------------------------------------------
382 | Software IEC/IEEE single-precision conversion routines.
383 *----------------------------------------------------------------------------*/
384 int16_t float32_to_int16(float32, float_status *status);
385 uint16_t float32_to_uint16(float32, float_status *status);
386 int16_t float32_to_int16_round_to_zero(float32, float_status *status);
387 uint16_t float32_to_uint16_round_to_zero(float32, float_status *status);
388 int32_t float32_to_int32(float32, float_status *status);
389 int32_t float32_to_int32_round_to_zero(float32, float_status *status);
390 uint32_t float32_to_uint32(float32, float_status *status);
391 uint32_t float32_to_uint32_round_to_zero(float32, float_status *status);
392 int64_t float32_to_int64(float32, float_status *status);
393 uint64_t float32_to_uint64(float32, float_status *status);
394 uint64_t float32_to_uint64_round_to_zero(float32, float_status *status);
395 int64_t float32_to_int64_round_to_zero(float32, float_status *status);
396 float64 float32_to_float64(float32, float_status *status);
397 floatx80 float32_to_floatx80(float32, float_status *status);
398 float128 float32_to_float128(float32, float_status *status);
399 
400 /*----------------------------------------------------------------------------
401 | Software IEC/IEEE single-precision operations.
402 *----------------------------------------------------------------------------*/
403 float32 float32_round_to_int(float32, float_status *status);
404 float32 float32_add(float32, float32, float_status *status);
405 float32 float32_sub(float32, float32, float_status *status);
406 float32 float32_mul(float32, float32, float_status *status);
407 float32 float32_div(float32, float32, float_status *status);
408 float32 float32_rem(float32, float32, float_status *status);
409 float32 float32_muladd(float32, float32, float32, int, float_status *status);
410 float32 float32_sqrt(float32, float_status *status);
411 float32 float32_exp2(float32, float_status *status);
412 float32 float32_log2(float32, float_status *status);
413 int float32_eq(float32, float32, float_status *status);
414 int float32_le(float32, float32, float_status *status);
415 int float32_lt(float32, float32, float_status *status);
416 int float32_unordered(float32, float32, float_status *status);
417 int float32_eq_quiet(float32, float32, float_status *status);
418 int float32_le_quiet(float32, float32, float_status *status);
419 int float32_lt_quiet(float32, float32, float_status *status);
420 int float32_unordered_quiet(float32, float32, float_status *status);
421 int float32_compare(float32, float32, float_status *status);
422 int float32_compare_quiet(float32, float32, float_status *status);
423 float32 float32_min(float32, float32, float_status *status);
424 float32 float32_max(float32, float32, float_status *status);
425 float32 float32_minnum(float32, float32, float_status *status);
426 float32 float32_maxnum(float32, float32, float_status *status);
427 float32 float32_minnummag(float32, float32, float_status *status);
428 float32 float32_maxnummag(float32, float32, float_status *status);
429 int float32_is_quiet_nan(float32, float_status *status);
430 int float32_is_signaling_nan(float32, float_status *status);
431 float32 float32_maybe_silence_nan(float32, float_status *status);
432 float32 float32_scalbn(float32, int, float_status *status);
433 
434 static inline float32 float32_abs(float32 a)
435 {
436     /* Note that abs does *not* handle NaN specially, nor does
437      * it flush denormal inputs to zero.
438      */
439     return make_float32(float32_val(a) & 0x7fffffff);
440 }
441 
442 static inline float32 float32_chs(float32 a)
443 {
444     /* Note that chs does *not* handle NaN specially, nor does
445      * it flush denormal inputs to zero.
446      */
447     return make_float32(float32_val(a) ^ 0x80000000);
448 }
449 
450 static inline int float32_is_infinity(float32 a)
451 {
452     return (float32_val(a) & 0x7fffffff) == 0x7f800000;
453 }
454 
455 static inline int float32_is_neg(float32 a)
456 {
457     return float32_val(a) >> 31;
458 }
459 
460 static inline int float32_is_zero(float32 a)
461 {
462     return (float32_val(a) & 0x7fffffff) == 0;
463 }
464 
465 static inline int float32_is_any_nan(float32 a)
466 {
467     return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL);
468 }
469 
470 static inline int float32_is_zero_or_denormal(float32 a)
471 {
472     return (float32_val(a) & 0x7f800000) == 0;
473 }
474 
475 static inline float32 float32_set_sign(float32 a, int sign)
476 {
477     return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31));
478 }
479 
480 #define float32_zero make_float32(0)
481 #define float32_one make_float32(0x3f800000)
482 #define float32_ln2 make_float32(0x3f317218)
483 #define float32_pi make_float32(0x40490fdb)
484 #define float32_half make_float32(0x3f000000)
485 #define float32_infinity make_float32(0x7f800000)
486 
487 
488 /*----------------------------------------------------------------------------
489 | The pattern for a default generated single-precision NaN.
490 *----------------------------------------------------------------------------*/
491 float32 float32_default_nan(float_status *status);
492 
493 /*----------------------------------------------------------------------------
494 | Software IEC/IEEE double-precision conversion routines.
495 *----------------------------------------------------------------------------*/
496 int16_t float64_to_int16(float64, float_status *status);
497 uint16_t float64_to_uint16(float64, float_status *status);
498 int16_t float64_to_int16_round_to_zero(float64, float_status *status);
499 uint16_t float64_to_uint16_round_to_zero(float64, float_status *status);
500 int32_t float64_to_int32(float64, float_status *status);
501 int32_t float64_to_int32_round_to_zero(float64, float_status *status);
502 uint32_t float64_to_uint32(float64, float_status *status);
503 uint32_t float64_to_uint32_round_to_zero(float64, float_status *status);
504 int64_t float64_to_int64(float64, float_status *status);
505 int64_t float64_to_int64_round_to_zero(float64, float_status *status);
506 uint64_t float64_to_uint64(float64 a, float_status *status);
507 uint64_t float64_to_uint64_round_to_zero(float64 a, float_status *status);
508 float32 float64_to_float32(float64, float_status *status);
509 floatx80 float64_to_floatx80(float64, float_status *status);
510 float128 float64_to_float128(float64, float_status *status);
511 
512 /*----------------------------------------------------------------------------
513 | Software IEC/IEEE double-precision operations.
514 *----------------------------------------------------------------------------*/
515 float64 float64_round_to_int(float64, float_status *status);
516 float64 float64_trunc_to_int(float64, float_status *status);
517 float64 float64_add(float64, float64, float_status *status);
518 float64 float64_sub(float64, float64, float_status *status);
519 float64 float64_mul(float64, float64, float_status *status);
520 float64 float64_div(float64, float64, float_status *status);
521 float64 float64_rem(float64, float64, float_status *status);
522 float64 float64_muladd(float64, float64, float64, int, float_status *status);
523 float64 float64_sqrt(float64, float_status *status);
524 float64 float64_log2(float64, float_status *status);
525 int float64_eq(float64, float64, float_status *status);
526 int float64_le(float64, float64, float_status *status);
527 int float64_lt(float64, float64, float_status *status);
528 int float64_unordered(float64, float64, float_status *status);
529 int float64_eq_quiet(float64, float64, float_status *status);
530 int float64_le_quiet(float64, float64, float_status *status);
531 int float64_lt_quiet(float64, float64, float_status *status);
532 int float64_unordered_quiet(float64, float64, float_status *status);
533 int float64_compare(float64, float64, float_status *status);
534 int float64_compare_quiet(float64, float64, float_status *status);
535 float64 float64_min(float64, float64, float_status *status);
536 float64 float64_max(float64, float64, float_status *status);
537 float64 float64_minnum(float64, float64, float_status *status);
538 float64 float64_maxnum(float64, float64, float_status *status);
539 float64 float64_minnummag(float64, float64, float_status *status);
540 float64 float64_maxnummag(float64, float64, float_status *status);
541 int float64_is_quiet_nan(float64 a, float_status *status);
542 int float64_is_signaling_nan(float64, float_status *status);
543 float64 float64_maybe_silence_nan(float64, float_status *status);
544 float64 float64_scalbn(float64, int, float_status *status);
545 
546 static inline float64 float64_abs(float64 a)
547 {
548     /* Note that abs does *not* handle NaN specially, nor does
549      * it flush denormal inputs to zero.
550      */
551     return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
552 }
553 
554 static inline float64 float64_chs(float64 a)
555 {
556     /* Note that chs does *not* handle NaN specially, nor does
557      * it flush denormal inputs to zero.
558      */
559     return make_float64(float64_val(a) ^ 0x8000000000000000LL);
560 }
561 
562 static inline int float64_is_infinity(float64 a)
563 {
564     return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
565 }
566 
567 static inline int float64_is_neg(float64 a)
568 {
569     return float64_val(a) >> 63;
570 }
571 
572 static inline int float64_is_zero(float64 a)
573 {
574     return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
575 }
576 
577 static inline int float64_is_any_nan(float64 a)
578 {
579     return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL);
580 }
581 
582 static inline int float64_is_zero_or_denormal(float64 a)
583 {
584     return (float64_val(a) & 0x7ff0000000000000LL) == 0;
585 }
586 
587 static inline float64 float64_set_sign(float64 a, int sign)
588 {
589     return make_float64((float64_val(a) & 0x7fffffffffffffffULL)
590                         | ((int64_t)sign << 63));
591 }
592 
593 #define float64_zero make_float64(0)
594 #define float64_one make_float64(0x3ff0000000000000LL)
595 #define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
596 #define float64_pi make_float64(0x400921fb54442d18LL)
597 #define float64_half make_float64(0x3fe0000000000000LL)
598 #define float64_infinity make_float64(0x7ff0000000000000LL)
599 
600 /*----------------------------------------------------------------------------
601 | The pattern for a default generated double-precision NaN.
602 *----------------------------------------------------------------------------*/
603 float64 float64_default_nan(float_status *status);
604 
605 /*----------------------------------------------------------------------------
606 | Software IEC/IEEE extended double-precision conversion routines.
607 *----------------------------------------------------------------------------*/
608 int32_t floatx80_to_int32(floatx80, float_status *status);
609 int32_t floatx80_to_int32_round_to_zero(floatx80, float_status *status);
610 int64_t floatx80_to_int64(floatx80, float_status *status);
611 int64_t floatx80_to_int64_round_to_zero(floatx80, float_status *status);
612 float32 floatx80_to_float32(floatx80, float_status *status);
613 float64 floatx80_to_float64(floatx80, float_status *status);
614 float128 floatx80_to_float128(floatx80, float_status *status);
615 
616 /*----------------------------------------------------------------------------
617 | Software IEC/IEEE extended double-precision operations.
618 *----------------------------------------------------------------------------*/
619 floatx80 floatx80_round(floatx80 a, float_status *status);
620 floatx80 floatx80_round_to_int(floatx80, float_status *status);
621 floatx80 floatx80_add(floatx80, floatx80, float_status *status);
622 floatx80 floatx80_sub(floatx80, floatx80, float_status *status);
623 floatx80 floatx80_mul(floatx80, floatx80, float_status *status);
624 floatx80 floatx80_div(floatx80, floatx80, float_status *status);
625 floatx80 floatx80_rem(floatx80, floatx80, float_status *status);
626 floatx80 floatx80_sqrt(floatx80, float_status *status);
627 int floatx80_eq(floatx80, floatx80, float_status *status);
628 int floatx80_le(floatx80, floatx80, float_status *status);
629 int floatx80_lt(floatx80, floatx80, float_status *status);
630 int floatx80_unordered(floatx80, floatx80, float_status *status);
631 int floatx80_eq_quiet(floatx80, floatx80, float_status *status);
632 int floatx80_le_quiet(floatx80, floatx80, float_status *status);
633 int floatx80_lt_quiet(floatx80, floatx80, float_status *status);
634 int floatx80_unordered_quiet(floatx80, floatx80, float_status *status);
635 int floatx80_compare(floatx80, floatx80, float_status *status);
636 int floatx80_compare_quiet(floatx80, floatx80, float_status *status);
637 int floatx80_is_quiet_nan(floatx80, float_status *status);
638 int floatx80_is_signaling_nan(floatx80, float_status *status);
639 floatx80 floatx80_maybe_silence_nan(floatx80, float_status *status);
640 floatx80 floatx80_scalbn(floatx80, int, float_status *status);
641 
642 static inline floatx80 floatx80_abs(floatx80 a)
643 {
644     a.high &= 0x7fff;
645     return a;
646 }
647 
648 static inline floatx80 floatx80_chs(floatx80 a)
649 {
650     a.high ^= 0x8000;
651     return a;
652 }
653 
654 static inline int floatx80_is_infinity(floatx80 a)
655 {
656     return (a.high & 0x7fff) == 0x7fff && a.low == 0x8000000000000000LL;
657 }
658 
659 static inline int floatx80_is_neg(floatx80 a)
660 {
661     return a.high >> 15;
662 }
663 
664 static inline int floatx80_is_zero(floatx80 a)
665 {
666     return (a.high & 0x7fff) == 0 && a.low == 0;
667 }
668 
669 static inline int floatx80_is_zero_or_denormal(floatx80 a)
670 {
671     return (a.high & 0x7fff) == 0;
672 }
673 
674 static inline int floatx80_is_any_nan(floatx80 a)
675 {
676     return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1);
677 }
678 
679 /*----------------------------------------------------------------------------
680 | Return whether the given value is an invalid floatx80 encoding.
681 | Invalid floatx80 encodings arise when the integer bit is not set, but
682 | the exponent is not zero. The only times the integer bit is permitted to
683 | be zero is in subnormal numbers and the value zero.
684 | This includes what the Intel software developer's manual calls pseudo-NaNs,
685 | pseudo-infinities and un-normal numbers. It does not include
686 | pseudo-denormals, which must still be correctly handled as inputs even
687 | if they are never generated as outputs.
688 *----------------------------------------------------------------------------*/
689 static inline bool floatx80_invalid_encoding(floatx80 a)
690 {
691     return (a.low & (1ULL << 63)) == 0 && (a.high & 0x7FFF) != 0;
692 }
693 
694 #define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL)
695 #define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL)
696 #define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL)
697 #define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL)
698 #define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL)
699 #define floatx80_infinity make_floatx80(0x7fff, 0x8000000000000000LL)
700 
701 /*----------------------------------------------------------------------------
702 | The pattern for a default generated extended double-precision NaN.
703 *----------------------------------------------------------------------------*/
704 floatx80 floatx80_default_nan(float_status *status);
705 
706 /*----------------------------------------------------------------------------
707 | Software IEC/IEEE quadruple-precision conversion routines.
708 *----------------------------------------------------------------------------*/
709 int32_t float128_to_int32(float128, float_status *status);
710 int32_t float128_to_int32_round_to_zero(float128, float_status *status);
711 int64_t float128_to_int64(float128, float_status *status);
712 int64_t float128_to_int64_round_to_zero(float128, float_status *status);
713 uint64_t float128_to_uint64(float128, float_status *status);
714 uint64_t float128_to_uint64_round_to_zero(float128, float_status *status);
715 uint32_t float128_to_uint32_round_to_zero(float128, float_status *status);
716 float32 float128_to_float32(float128, float_status *status);
717 float64 float128_to_float64(float128, float_status *status);
718 floatx80 float128_to_floatx80(float128, float_status *status);
719 
720 /*----------------------------------------------------------------------------
721 | Software IEC/IEEE quadruple-precision operations.
722 *----------------------------------------------------------------------------*/
723 float128 float128_round_to_int(float128, float_status *status);
724 float128 float128_add(float128, float128, float_status *status);
725 float128 float128_sub(float128, float128, float_status *status);
726 float128 float128_mul(float128, float128, float_status *status);
727 float128 float128_div(float128, float128, float_status *status);
728 float128 float128_rem(float128, float128, float_status *status);
729 float128 float128_sqrt(float128, float_status *status);
730 int float128_eq(float128, float128, float_status *status);
731 int float128_le(float128, float128, float_status *status);
732 int float128_lt(float128, float128, float_status *status);
733 int float128_unordered(float128, float128, float_status *status);
734 int float128_eq_quiet(float128, float128, float_status *status);
735 int float128_le_quiet(float128, float128, float_status *status);
736 int float128_lt_quiet(float128, float128, float_status *status);
737 int float128_unordered_quiet(float128, float128, float_status *status);
738 int float128_compare(float128, float128, float_status *status);
739 int float128_compare_quiet(float128, float128, float_status *status);
740 int float128_is_quiet_nan(float128, float_status *status);
741 int float128_is_signaling_nan(float128, float_status *status);
742 float128 float128_maybe_silence_nan(float128, float_status *status);
743 float128 float128_scalbn(float128, int, float_status *status);
744 
745 static inline float128 float128_abs(float128 a)
746 {
747     a.high &= 0x7fffffffffffffffLL;
748     return a;
749 }
750 
751 static inline float128 float128_chs(float128 a)
752 {
753     a.high ^= 0x8000000000000000LL;
754     return a;
755 }
756 
757 static inline int float128_is_infinity(float128 a)
758 {
759     return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
760 }
761 
762 static inline int float128_is_neg(float128 a)
763 {
764     return a.high >> 63;
765 }
766 
767 static inline int float128_is_zero(float128 a)
768 {
769     return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
770 }
771 
772 static inline int float128_is_zero_or_denormal(float128 a)
773 {
774     return (a.high & 0x7fff000000000000LL) == 0;
775 }
776 
777 static inline int float128_is_any_nan(float128 a)
778 {
779     return ((a.high >> 48) & 0x7fff) == 0x7fff &&
780         ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0));
781 }
782 
783 #define float128_zero make_float128(0, 0)
784 
785 /*----------------------------------------------------------------------------
786 | The pattern for a default generated quadruple-precision NaN.
787 *----------------------------------------------------------------------------*/
788 float128 float128_default_nan(float_status *status);
789 
790 #endif /* SOFTFLOAT_H */
791