xref: /qemu/include/fpu/softfloat.h (revision 7a4e543d)
1 /*
2  * QEMU float support
3  *
4  * The code in this source file is derived from release 2a of the SoftFloat
5  * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
6  * some later contributions) are provided under that license, as detailed below.
7  * It has subsequently been modified by contributors to the QEMU Project,
8  * so some portions are provided under:
9  *  the SoftFloat-2a license
10  *  the BSD license
11  *  GPL-v2-or-later
12  *
13  * Any future contributions to this file after December 1st 2014 will be
14  * taken to be licensed under the Softfloat-2a license unless specifically
15  * indicated otherwise.
16  */
17 
18 /*
19 ===============================================================================
20 This C header file is part of the SoftFloat IEC/IEEE Floating-point
21 Arithmetic Package, Release 2a.
22 
23 Written by John R. Hauser.  This work was made possible in part by the
24 International Computer Science Institute, located at Suite 600, 1947 Center
25 Street, Berkeley, California 94704.  Funding was partially provided by the
26 National Science Foundation under grant MIP-9311980.  The original version
27 of this code was written as part of a project to build a fixed-point vector
28 processor in collaboration with the University of California at Berkeley,
29 overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
30 is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
31 arithmetic/SoftFloat.html'.
32 
33 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
34 has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
35 TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
36 PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
37 AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
38 
39 Derivative works are acceptable, even for commercial purposes, so long as
40 (1) they include prominent notice that the work is derivative, and (2) they
41 include prominent notice akin to these four paragraphs for those parts of
42 this code that are retained.
43 
44 ===============================================================================
45 */
46 
47 /* BSD licensing:
48  * Copyright (c) 2006, Fabrice Bellard
49  * All rights reserved.
50  *
51  * Redistribution and use in source and binary forms, with or without
52  * modification, are permitted provided that the following conditions are met:
53  *
54  * 1. Redistributions of source code must retain the above copyright notice,
55  * this list of conditions and the following disclaimer.
56  *
57  * 2. Redistributions in binary form must reproduce the above copyright notice,
58  * this list of conditions and the following disclaimer in the documentation
59  * and/or other materials provided with the distribution.
60  *
61  * 3. Neither the name of the copyright holder nor the names of its contributors
62  * may be used to endorse or promote products derived from this software without
63  * specific prior written permission.
64  *
65  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
66  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
69  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
70  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
71  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
72  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
73  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
74  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
75  * THE POSSIBILITY OF SUCH DAMAGE.
76  */
77 
78 /* Portions of this work are licensed under the terms of the GNU GPL,
79  * version 2 or later. See the COPYING file in the top-level directory.
80  */
81 
82 #ifndef SOFTFLOAT_H
83 #define SOFTFLOAT_H
84 
85 #if defined(CONFIG_SOLARIS) && defined(CONFIG_NEEDS_LIBSUNMATH)
86 #include <sunmath.h>
87 #endif
88 
89 #include <inttypes.h>
90 #include "config-host.h"
91 #include "qemu/osdep.h"
92 
93 /* This 'flag' type must be able to hold at least 0 and 1. It should
94  * probably be replaced with 'bool' but the uses would need to be audited
95  * to check that they weren't accidentally relying on it being a larger type.
96  */
97 typedef uint8_t flag;
98 
99 #define LIT64( a ) a##LL
100 
101 /*----------------------------------------------------------------------------
102 | Software IEC/IEEE floating-point ordering relations
103 *----------------------------------------------------------------------------*/
104 enum {
105     float_relation_less      = -1,
106     float_relation_equal     =  0,
107     float_relation_greater   =  1,
108     float_relation_unordered =  2
109 };
110 
111 /*----------------------------------------------------------------------------
112 | Software IEC/IEEE floating-point types.
113 *----------------------------------------------------------------------------*/
114 /* Use structures for soft-float types.  This prevents accidentally mixing
115    them with native int/float types.  A sufficiently clever compiler and
116    sane ABI should be able to see though these structs.  However
117    x86/gcc 3.x seems to struggle a bit, so leave them disabled by default.  */
118 //#define USE_SOFTFLOAT_STRUCT_TYPES
119 #ifdef USE_SOFTFLOAT_STRUCT_TYPES
120 typedef struct {
121     uint16_t v;
122 } float16;
123 #define float16_val(x) (((float16)(x)).v)
124 #define make_float16(x) __extension__ ({ float16 f16_val = {x}; f16_val; })
125 #define const_float16(x) { x }
126 typedef struct {
127     uint32_t v;
128 } float32;
129 /* The cast ensures an error if the wrong type is passed.  */
130 #define float32_val(x) (((float32)(x)).v)
131 #define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; })
132 #define const_float32(x) { x }
133 typedef struct {
134     uint64_t v;
135 } float64;
136 #define float64_val(x) (((float64)(x)).v)
137 #define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; })
138 #define const_float64(x) { x }
139 #else
140 typedef uint16_t float16;
141 typedef uint32_t float32;
142 typedef uint64_t float64;
143 #define float16_val(x) (x)
144 #define float32_val(x) (x)
145 #define float64_val(x) (x)
146 #define make_float16(x) (x)
147 #define make_float32(x) (x)
148 #define make_float64(x) (x)
149 #define const_float16(x) (x)
150 #define const_float32(x) (x)
151 #define const_float64(x) (x)
152 #endif
153 typedef struct {
154     uint64_t low;
155     uint16_t high;
156 } floatx80;
157 #define make_floatx80(exp, mant) ((floatx80) { mant, exp })
158 #define make_floatx80_init(exp, mant) { .low = mant, .high = exp }
159 typedef struct {
160 #ifdef HOST_WORDS_BIGENDIAN
161     uint64_t high, low;
162 #else
163     uint64_t low, high;
164 #endif
165 } float128;
166 #define make_float128(high_, low_) ((float128) { .high = high_, .low = low_ })
167 #define make_float128_init(high_, low_) { .high = high_, .low = low_ }
168 
169 /*----------------------------------------------------------------------------
170 | Software IEC/IEEE floating-point underflow tininess-detection mode.
171 *----------------------------------------------------------------------------*/
172 enum {
173     float_tininess_after_rounding  = 0,
174     float_tininess_before_rounding = 1
175 };
176 
177 /*----------------------------------------------------------------------------
178 | Software IEC/IEEE floating-point rounding mode.
179 *----------------------------------------------------------------------------*/
180 enum {
181     float_round_nearest_even = 0,
182     float_round_down         = 1,
183     float_round_up           = 2,
184     float_round_to_zero      = 3,
185     float_round_ties_away    = 4,
186 };
187 
188 /*----------------------------------------------------------------------------
189 | Software IEC/IEEE floating-point exception flags.
190 *----------------------------------------------------------------------------*/
191 enum {
192     float_flag_invalid   =  1,
193     float_flag_divbyzero =  4,
194     float_flag_overflow  =  8,
195     float_flag_underflow = 16,
196     float_flag_inexact   = 32,
197     float_flag_input_denormal = 64,
198     float_flag_output_denormal = 128
199 };
200 
201 typedef struct float_status {
202     signed char float_detect_tininess;
203     signed char float_rounding_mode;
204     signed char float_exception_flags;
205     signed char floatx80_rounding_precision;
206     /* should denormalised results go to zero and set the inexact flag? */
207     flag flush_to_zero;
208     /* should denormalised inputs go to zero and set the input_denormal flag? */
209     flag flush_inputs_to_zero;
210     flag default_nan_mode;
211 } float_status;
212 
213 static inline void set_float_detect_tininess(int val, float_status *status)
214 {
215     status->float_detect_tininess = val;
216 }
217 static inline void set_float_rounding_mode(int val, float_status *status)
218 {
219     status->float_rounding_mode = val;
220 }
221 static inline void set_float_exception_flags(int val, float_status *status)
222 {
223     status->float_exception_flags = val;
224 }
225 static inline void set_floatx80_rounding_precision(int val,
226                                                    float_status *status)
227 {
228     status->floatx80_rounding_precision = val;
229 }
230 static inline void set_flush_to_zero(flag val, float_status *status)
231 {
232     status->flush_to_zero = val;
233 }
234 static inline void set_flush_inputs_to_zero(flag val, float_status *status)
235 {
236     status->flush_inputs_to_zero = val;
237 }
238 static inline void set_default_nan_mode(flag val, float_status *status)
239 {
240     status->default_nan_mode = val;
241 }
242 static inline int get_float_detect_tininess(float_status *status)
243 {
244     return status->float_detect_tininess;
245 }
246 static inline int get_float_rounding_mode(float_status *status)
247 {
248     return status->float_rounding_mode;
249 }
250 static inline int get_float_exception_flags(float_status *status)
251 {
252     return status->float_exception_flags;
253 }
254 static inline int get_floatx80_rounding_precision(float_status *status)
255 {
256     return status->floatx80_rounding_precision;
257 }
258 static inline flag get_flush_to_zero(float_status *status)
259 {
260     return status->flush_to_zero;
261 }
262 static inline flag get_flush_inputs_to_zero(float_status *status)
263 {
264     return status->flush_inputs_to_zero;
265 }
266 static inline flag get_default_nan_mode(float_status *status)
267 {
268     return status->default_nan_mode;
269 }
270 
271 /*----------------------------------------------------------------------------
272 | Routine to raise any or all of the software IEC/IEEE floating-point
273 | exception flags.
274 *----------------------------------------------------------------------------*/
275 void float_raise(int8_t flags, float_status *status);
276 
277 /*----------------------------------------------------------------------------
278 | If `a' is denormal and we are in flush-to-zero mode then set the
279 | input-denormal exception and return zero. Otherwise just return the value.
280 *----------------------------------------------------------------------------*/
281 float32 float32_squash_input_denormal(float32 a, float_status *status);
282 float64 float64_squash_input_denormal(float64 a, float_status *status);
283 
284 /*----------------------------------------------------------------------------
285 | Options to indicate which negations to perform in float*_muladd()
286 | Using these differs from negating an input or output before calling
287 | the muladd function in that this means that a NaN doesn't have its
288 | sign bit inverted before it is propagated.
289 | We also support halving the result before rounding, as a special
290 | case to support the ARM fused-sqrt-step instruction FRSQRTS.
291 *----------------------------------------------------------------------------*/
292 enum {
293     float_muladd_negate_c = 1,
294     float_muladd_negate_product = 2,
295     float_muladd_negate_result = 4,
296     float_muladd_halve_result = 8,
297 };
298 
299 /*----------------------------------------------------------------------------
300 | Software IEC/IEEE integer-to-floating-point conversion routines.
301 *----------------------------------------------------------------------------*/
302 float32 int32_to_float32(int32_t, float_status *status);
303 float64 int32_to_float64(int32_t, float_status *status);
304 float32 uint32_to_float32(uint32_t, float_status *status);
305 float64 uint32_to_float64(uint32_t, float_status *status);
306 floatx80 int32_to_floatx80(int32_t, float_status *status);
307 float128 int32_to_float128(int32_t, float_status *status);
308 float32 int64_to_float32(int64_t, float_status *status);
309 float64 int64_to_float64(int64_t, float_status *status);
310 floatx80 int64_to_floatx80(int64_t, float_status *status);
311 float128 int64_to_float128(int64_t, float_status *status);
312 float32 uint64_to_float32(uint64_t, float_status *status);
313 float64 uint64_to_float64(uint64_t, float_status *status);
314 float128 uint64_to_float128(uint64_t, float_status *status);
315 
316 /* We provide the int16 versions for symmetry of API with float-to-int */
317 static inline float32 int16_to_float32(int16_t v, float_status *status)
318 {
319     return int32_to_float32(v, status);
320 }
321 
322 static inline float32 uint16_to_float32(uint16_t v, float_status *status)
323 {
324     return uint32_to_float32(v, status);
325 }
326 
327 static inline float64 int16_to_float64(int16_t v, float_status *status)
328 {
329     return int32_to_float64(v, status);
330 }
331 
332 static inline float64 uint16_to_float64(uint16_t v, float_status *status)
333 {
334     return uint32_to_float64(v, status);
335 }
336 
337 /*----------------------------------------------------------------------------
338 | Software half-precision conversion routines.
339 *----------------------------------------------------------------------------*/
340 float16 float32_to_float16(float32, flag, float_status *status);
341 float32 float16_to_float32(float16, flag, float_status *status);
342 float16 float64_to_float16(float64 a, flag ieee, float_status *status);
343 float64 float16_to_float64(float16 a, flag ieee, float_status *status);
344 
345 /*----------------------------------------------------------------------------
346 | Software half-precision operations.
347 *----------------------------------------------------------------------------*/
348 int float16_is_quiet_nan( float16 );
349 int float16_is_signaling_nan( float16 );
350 float16 float16_maybe_silence_nan( float16 );
351 
352 static inline int float16_is_any_nan(float16 a)
353 {
354     return ((float16_val(a) & ~0x8000) > 0x7c00);
355 }
356 
357 /*----------------------------------------------------------------------------
358 | The pattern for a default generated half-precision NaN.
359 *----------------------------------------------------------------------------*/
360 extern const float16 float16_default_nan;
361 
362 /*----------------------------------------------------------------------------
363 | Software IEC/IEEE single-precision conversion routines.
364 *----------------------------------------------------------------------------*/
365 int_fast16_t float32_to_int16(float32, float_status *status);
366 uint_fast16_t float32_to_uint16(float32, float_status *status);
367 int_fast16_t float32_to_int16_round_to_zero(float32, float_status *status);
368 uint_fast16_t float32_to_uint16_round_to_zero(float32, float_status *status);
369 int32_t float32_to_int32(float32, float_status *status);
370 int32_t float32_to_int32_round_to_zero(float32, float_status *status);
371 uint32_t float32_to_uint32(float32, float_status *status);
372 uint32_t float32_to_uint32_round_to_zero(float32, float_status *status);
373 int64_t float32_to_int64(float32, float_status *status);
374 uint64_t float32_to_uint64(float32, float_status *status);
375 uint64_t float32_to_uint64_round_to_zero(float32, float_status *status);
376 int64_t float32_to_int64_round_to_zero(float32, float_status *status);
377 float64 float32_to_float64(float32, float_status *status);
378 floatx80 float32_to_floatx80(float32, float_status *status);
379 float128 float32_to_float128(float32, float_status *status);
380 
381 /*----------------------------------------------------------------------------
382 | Software IEC/IEEE single-precision operations.
383 *----------------------------------------------------------------------------*/
384 float32 float32_round_to_int(float32, float_status *status);
385 float32 float32_add(float32, float32, float_status *status);
386 float32 float32_sub(float32, float32, float_status *status);
387 float32 float32_mul(float32, float32, float_status *status);
388 float32 float32_div(float32, float32, float_status *status);
389 float32 float32_rem(float32, float32, float_status *status);
390 float32 float32_muladd(float32, float32, float32, int, float_status *status);
391 float32 float32_sqrt(float32, float_status *status);
392 float32 float32_exp2(float32, float_status *status);
393 float32 float32_log2(float32, float_status *status);
394 int float32_eq(float32, float32, float_status *status);
395 int float32_le(float32, float32, float_status *status);
396 int float32_lt(float32, float32, float_status *status);
397 int float32_unordered(float32, float32, float_status *status);
398 int float32_eq_quiet(float32, float32, float_status *status);
399 int float32_le_quiet(float32, float32, float_status *status);
400 int float32_lt_quiet(float32, float32, float_status *status);
401 int float32_unordered_quiet(float32, float32, float_status *status);
402 int float32_compare(float32, float32, float_status *status);
403 int float32_compare_quiet(float32, float32, float_status *status);
404 float32 float32_min(float32, float32, float_status *status);
405 float32 float32_max(float32, float32, float_status *status);
406 float32 float32_minnum(float32, float32, float_status *status);
407 float32 float32_maxnum(float32, float32, float_status *status);
408 float32 float32_minnummag(float32, float32, float_status *status);
409 float32 float32_maxnummag(float32, float32, float_status *status);
410 int float32_is_quiet_nan( float32 );
411 int float32_is_signaling_nan( float32 );
412 float32 float32_maybe_silence_nan( float32 );
413 float32 float32_scalbn(float32, int, float_status *status);
414 
415 static inline float32 float32_abs(float32 a)
416 {
417     /* Note that abs does *not* handle NaN specially, nor does
418      * it flush denormal inputs to zero.
419      */
420     return make_float32(float32_val(a) & 0x7fffffff);
421 }
422 
423 static inline float32 float32_chs(float32 a)
424 {
425     /* Note that chs does *not* handle NaN specially, nor does
426      * it flush denormal inputs to zero.
427      */
428     return make_float32(float32_val(a) ^ 0x80000000);
429 }
430 
431 static inline int float32_is_infinity(float32 a)
432 {
433     return (float32_val(a) & 0x7fffffff) == 0x7f800000;
434 }
435 
436 static inline int float32_is_neg(float32 a)
437 {
438     return float32_val(a) >> 31;
439 }
440 
441 static inline int float32_is_zero(float32 a)
442 {
443     return (float32_val(a) & 0x7fffffff) == 0;
444 }
445 
446 static inline int float32_is_any_nan(float32 a)
447 {
448     return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL);
449 }
450 
451 static inline int float32_is_zero_or_denormal(float32 a)
452 {
453     return (float32_val(a) & 0x7f800000) == 0;
454 }
455 
456 static inline float32 float32_set_sign(float32 a, int sign)
457 {
458     return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31));
459 }
460 
461 #define float32_zero make_float32(0)
462 #define float32_one make_float32(0x3f800000)
463 #define float32_ln2 make_float32(0x3f317218)
464 #define float32_pi make_float32(0x40490fdb)
465 #define float32_half make_float32(0x3f000000)
466 #define float32_infinity make_float32(0x7f800000)
467 
468 
469 /*----------------------------------------------------------------------------
470 | The pattern for a default generated single-precision NaN.
471 *----------------------------------------------------------------------------*/
472 extern const float32 float32_default_nan;
473 
474 /*----------------------------------------------------------------------------
475 | Software IEC/IEEE double-precision conversion routines.
476 *----------------------------------------------------------------------------*/
477 int_fast16_t float64_to_int16(float64, float_status *status);
478 uint_fast16_t float64_to_uint16(float64, float_status *status);
479 int_fast16_t float64_to_int16_round_to_zero(float64, float_status *status);
480 uint_fast16_t float64_to_uint16_round_to_zero(float64, float_status *status);
481 int32_t float64_to_int32(float64, float_status *status);
482 int32_t float64_to_int32_round_to_zero(float64, float_status *status);
483 uint32_t float64_to_uint32(float64, float_status *status);
484 uint32_t float64_to_uint32_round_to_zero(float64, float_status *status);
485 int64_t float64_to_int64(float64, float_status *status);
486 int64_t float64_to_int64_round_to_zero(float64, float_status *status);
487 uint64_t float64_to_uint64(float64 a, float_status *status);
488 uint64_t float64_to_uint64_round_to_zero(float64 a, float_status *status);
489 float32 float64_to_float32(float64, float_status *status);
490 floatx80 float64_to_floatx80(float64, float_status *status);
491 float128 float64_to_float128(float64, float_status *status);
492 
493 /*----------------------------------------------------------------------------
494 | Software IEC/IEEE double-precision operations.
495 *----------------------------------------------------------------------------*/
496 float64 float64_round_to_int(float64, float_status *status);
497 float64 float64_trunc_to_int(float64, float_status *status);
498 float64 float64_add(float64, float64, float_status *status);
499 float64 float64_sub(float64, float64, float_status *status);
500 float64 float64_mul(float64, float64, float_status *status);
501 float64 float64_div(float64, float64, float_status *status);
502 float64 float64_rem(float64, float64, float_status *status);
503 float64 float64_muladd(float64, float64, float64, int, float_status *status);
504 float64 float64_sqrt(float64, float_status *status);
505 float64 float64_log2(float64, float_status *status);
506 int float64_eq(float64, float64, float_status *status);
507 int float64_le(float64, float64, float_status *status);
508 int float64_lt(float64, float64, float_status *status);
509 int float64_unordered(float64, float64, float_status *status);
510 int float64_eq_quiet(float64, float64, float_status *status);
511 int float64_le_quiet(float64, float64, float_status *status);
512 int float64_lt_quiet(float64, float64, float_status *status);
513 int float64_unordered_quiet(float64, float64, float_status *status);
514 int float64_compare(float64, float64, float_status *status);
515 int float64_compare_quiet(float64, float64, float_status *status);
516 float64 float64_min(float64, float64, float_status *status);
517 float64 float64_max(float64, float64, float_status *status);
518 float64 float64_minnum(float64, float64, float_status *status);
519 float64 float64_maxnum(float64, float64, float_status *status);
520 float64 float64_minnummag(float64, float64, float_status *status);
521 float64 float64_maxnummag(float64, float64, float_status *status);
522 int float64_is_quiet_nan( float64 a );
523 int float64_is_signaling_nan( float64 );
524 float64 float64_maybe_silence_nan( float64 );
525 float64 float64_scalbn(float64, int, float_status *status);
526 
527 static inline float64 float64_abs(float64 a)
528 {
529     /* Note that abs does *not* handle NaN specially, nor does
530      * it flush denormal inputs to zero.
531      */
532     return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
533 }
534 
535 static inline float64 float64_chs(float64 a)
536 {
537     /* Note that chs does *not* handle NaN specially, nor does
538      * it flush denormal inputs to zero.
539      */
540     return make_float64(float64_val(a) ^ 0x8000000000000000LL);
541 }
542 
543 static inline int float64_is_infinity(float64 a)
544 {
545     return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
546 }
547 
548 static inline int float64_is_neg(float64 a)
549 {
550     return float64_val(a) >> 63;
551 }
552 
553 static inline int float64_is_zero(float64 a)
554 {
555     return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
556 }
557 
558 static inline int float64_is_any_nan(float64 a)
559 {
560     return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL);
561 }
562 
563 static inline int float64_is_zero_or_denormal(float64 a)
564 {
565     return (float64_val(a) & 0x7ff0000000000000LL) == 0;
566 }
567 
568 static inline float64 float64_set_sign(float64 a, int sign)
569 {
570     return make_float64((float64_val(a) & 0x7fffffffffffffffULL)
571                         | ((int64_t)sign << 63));
572 }
573 
574 #define float64_zero make_float64(0)
575 #define float64_one make_float64(0x3ff0000000000000LL)
576 #define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
577 #define float64_pi make_float64(0x400921fb54442d18LL)
578 #define float64_half make_float64(0x3fe0000000000000LL)
579 #define float64_infinity make_float64(0x7ff0000000000000LL)
580 
581 /*----------------------------------------------------------------------------
582 | The pattern for a default generated double-precision NaN.
583 *----------------------------------------------------------------------------*/
584 extern const float64 float64_default_nan;
585 
586 /*----------------------------------------------------------------------------
587 | Software IEC/IEEE extended double-precision conversion routines.
588 *----------------------------------------------------------------------------*/
589 int32_t floatx80_to_int32(floatx80, float_status *status);
590 int32_t floatx80_to_int32_round_to_zero(floatx80, float_status *status);
591 int64_t floatx80_to_int64(floatx80, float_status *status);
592 int64_t floatx80_to_int64_round_to_zero(floatx80, float_status *status);
593 float32 floatx80_to_float32(floatx80, float_status *status);
594 float64 floatx80_to_float64(floatx80, float_status *status);
595 float128 floatx80_to_float128(floatx80, float_status *status);
596 
597 /*----------------------------------------------------------------------------
598 | Software IEC/IEEE extended double-precision operations.
599 *----------------------------------------------------------------------------*/
600 floatx80 floatx80_round_to_int(floatx80, float_status *status);
601 floatx80 floatx80_add(floatx80, floatx80, float_status *status);
602 floatx80 floatx80_sub(floatx80, floatx80, float_status *status);
603 floatx80 floatx80_mul(floatx80, floatx80, float_status *status);
604 floatx80 floatx80_div(floatx80, floatx80, float_status *status);
605 floatx80 floatx80_rem(floatx80, floatx80, float_status *status);
606 floatx80 floatx80_sqrt(floatx80, float_status *status);
607 int floatx80_eq(floatx80, floatx80, float_status *status);
608 int floatx80_le(floatx80, floatx80, float_status *status);
609 int floatx80_lt(floatx80, floatx80, float_status *status);
610 int floatx80_unordered(floatx80, floatx80, float_status *status);
611 int floatx80_eq_quiet(floatx80, floatx80, float_status *status);
612 int floatx80_le_quiet(floatx80, floatx80, float_status *status);
613 int floatx80_lt_quiet(floatx80, floatx80, float_status *status);
614 int floatx80_unordered_quiet(floatx80, floatx80, float_status *status);
615 int floatx80_compare(floatx80, floatx80, float_status *status);
616 int floatx80_compare_quiet(floatx80, floatx80, float_status *status);
617 int floatx80_is_quiet_nan( floatx80 );
618 int floatx80_is_signaling_nan( floatx80 );
619 floatx80 floatx80_maybe_silence_nan( floatx80 );
620 floatx80 floatx80_scalbn(floatx80, int, float_status *status);
621 
622 static inline floatx80 floatx80_abs(floatx80 a)
623 {
624     a.high &= 0x7fff;
625     return a;
626 }
627 
628 static inline floatx80 floatx80_chs(floatx80 a)
629 {
630     a.high ^= 0x8000;
631     return a;
632 }
633 
634 static inline int floatx80_is_infinity(floatx80 a)
635 {
636     return (a.high & 0x7fff) == 0x7fff && a.low == 0x8000000000000000LL;
637 }
638 
639 static inline int floatx80_is_neg(floatx80 a)
640 {
641     return a.high >> 15;
642 }
643 
644 static inline int floatx80_is_zero(floatx80 a)
645 {
646     return (a.high & 0x7fff) == 0 && a.low == 0;
647 }
648 
649 static inline int floatx80_is_zero_or_denormal(floatx80 a)
650 {
651     return (a.high & 0x7fff) == 0;
652 }
653 
654 static inline int floatx80_is_any_nan(floatx80 a)
655 {
656     return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1);
657 }
658 
659 #define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL)
660 #define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL)
661 #define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL)
662 #define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL)
663 #define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL)
664 #define floatx80_infinity make_floatx80(0x7fff, 0x8000000000000000LL)
665 
666 /*----------------------------------------------------------------------------
667 | The pattern for a default generated extended double-precision NaN.
668 *----------------------------------------------------------------------------*/
669 extern const floatx80 floatx80_default_nan;
670 
671 /*----------------------------------------------------------------------------
672 | Software IEC/IEEE quadruple-precision conversion routines.
673 *----------------------------------------------------------------------------*/
674 int32_t float128_to_int32(float128, float_status *status);
675 int32_t float128_to_int32_round_to_zero(float128, float_status *status);
676 int64_t float128_to_int64(float128, float_status *status);
677 int64_t float128_to_int64_round_to_zero(float128, float_status *status);
678 float32 float128_to_float32(float128, float_status *status);
679 float64 float128_to_float64(float128, float_status *status);
680 floatx80 float128_to_floatx80(float128, float_status *status);
681 
682 /*----------------------------------------------------------------------------
683 | Software IEC/IEEE quadruple-precision operations.
684 *----------------------------------------------------------------------------*/
685 float128 float128_round_to_int(float128, float_status *status);
686 float128 float128_add(float128, float128, float_status *status);
687 float128 float128_sub(float128, float128, float_status *status);
688 float128 float128_mul(float128, float128, float_status *status);
689 float128 float128_div(float128, float128, float_status *status);
690 float128 float128_rem(float128, float128, float_status *status);
691 float128 float128_sqrt(float128, float_status *status);
692 int float128_eq(float128, float128, float_status *status);
693 int float128_le(float128, float128, float_status *status);
694 int float128_lt(float128, float128, float_status *status);
695 int float128_unordered(float128, float128, float_status *status);
696 int float128_eq_quiet(float128, float128, float_status *status);
697 int float128_le_quiet(float128, float128, float_status *status);
698 int float128_lt_quiet(float128, float128, float_status *status);
699 int float128_unordered_quiet(float128, float128, float_status *status);
700 int float128_compare(float128, float128, float_status *status);
701 int float128_compare_quiet(float128, float128, float_status *status);
702 int float128_is_quiet_nan( float128 );
703 int float128_is_signaling_nan( float128 );
704 float128 float128_maybe_silence_nan( float128 );
705 float128 float128_scalbn(float128, int, float_status *status);
706 
707 static inline float128 float128_abs(float128 a)
708 {
709     a.high &= 0x7fffffffffffffffLL;
710     return a;
711 }
712 
713 static inline float128 float128_chs(float128 a)
714 {
715     a.high ^= 0x8000000000000000LL;
716     return a;
717 }
718 
719 static inline int float128_is_infinity(float128 a)
720 {
721     return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
722 }
723 
724 static inline int float128_is_neg(float128 a)
725 {
726     return a.high >> 63;
727 }
728 
729 static inline int float128_is_zero(float128 a)
730 {
731     return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
732 }
733 
734 static inline int float128_is_zero_or_denormal(float128 a)
735 {
736     return (a.high & 0x7fff000000000000LL) == 0;
737 }
738 
739 static inline int float128_is_any_nan(float128 a)
740 {
741     return ((a.high >> 48) & 0x7fff) == 0x7fff &&
742         ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0));
743 }
744 
745 #define float128_zero make_float128(0, 0)
746 
747 /*----------------------------------------------------------------------------
748 | The pattern for a default generated quadruple-precision NaN.
749 *----------------------------------------------------------------------------*/
750 extern const float128 float128_default_nan;
751 
752 #endif /* !SOFTFLOAT_H */
753