xref: /qemu/include/fpu/softfloat.h (revision ef291226)
1 /*
2  * QEMU float support
3  *
4  * The code in this source file is derived from release 2a of the SoftFloat
5  * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
6  * some later contributions) are provided under that license, as detailed below.
7  * It has subsequently been modified by contributors to the QEMU Project,
8  * so some portions are provided under:
9  *  the SoftFloat-2a license
10  *  the BSD license
11  *  GPL-v2-or-later
12  *
13  * Any future contributions to this file after December 1st 2014 will be
14  * taken to be licensed under the Softfloat-2a license unless specifically
15  * indicated otherwise.
16  */
17 
18 /*
19 ===============================================================================
20 This C header file is part of the SoftFloat IEC/IEEE Floating-point
21 Arithmetic Package, Release 2a.
22 
23 Written by John R. Hauser.  This work was made possible in part by the
24 International Computer Science Institute, located at Suite 600, 1947 Center
25 Street, Berkeley, California 94704.  Funding was partially provided by the
26 National Science Foundation under grant MIP-9311980.  The original version
27 of this code was written as part of a project to build a fixed-point vector
28 processor in collaboration with the University of California at Berkeley,
29 overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
30 is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
31 arithmetic/SoftFloat.html'.
32 
33 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
34 has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
35 TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
36 PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
37 AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
38 
39 Derivative works are acceptable, even for commercial purposes, so long as
40 (1) they include prominent notice that the work is derivative, and (2) they
41 include prominent notice akin to these four paragraphs for those parts of
42 this code that are retained.
43 
44 ===============================================================================
45 */
46 
47 /* BSD licensing:
48  * Copyright (c) 2006, Fabrice Bellard
49  * All rights reserved.
50  *
51  * Redistribution and use in source and binary forms, with or without
52  * modification, are permitted provided that the following conditions are met:
53  *
54  * 1. Redistributions of source code must retain the above copyright notice,
55  * this list of conditions and the following disclaimer.
56  *
57  * 2. Redistributions in binary form must reproduce the above copyright notice,
58  * this list of conditions and the following disclaimer in the documentation
59  * and/or other materials provided with the distribution.
60  *
61  * 3. Neither the name of the copyright holder nor the names of its contributors
62  * may be used to endorse or promote products derived from this software without
63  * specific prior written permission.
64  *
65  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
66  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
69  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
70  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
71  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
72  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
73  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
74  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
75  * THE POSSIBILITY OF SUCH DAMAGE.
76  */
77 
78 /* Portions of this work are licensed under the terms of the GNU GPL,
79  * version 2 or later. See the COPYING file in the top-level directory.
80  */
81 
82 #ifndef SOFTFLOAT_H
83 #define SOFTFLOAT_H
84 
85 #if defined(CONFIG_SOLARIS) && defined(CONFIG_NEEDS_LIBSUNMATH)
86 #include <sunmath.h>
87 #endif
88 
89 
90 /* This 'flag' type must be able to hold at least 0 and 1. It should
91  * probably be replaced with 'bool' but the uses would need to be audited
92  * to check that they weren't accidentally relying on it being a larger type.
93  */
94 typedef uint8_t flag;
95 
96 #define LIT64( a ) a##LL
97 
98 /*----------------------------------------------------------------------------
99 | Software IEC/IEEE floating-point ordering relations
100 *----------------------------------------------------------------------------*/
101 enum {
102     float_relation_less      = -1,
103     float_relation_equal     =  0,
104     float_relation_greater   =  1,
105     float_relation_unordered =  2
106 };
107 
108 /*----------------------------------------------------------------------------
109 | Software IEC/IEEE floating-point types.
110 *----------------------------------------------------------------------------*/
111 /* Use structures for soft-float types.  This prevents accidentally mixing
112    them with native int/float types.  A sufficiently clever compiler and
113    sane ABI should be able to see though these structs.  However
114    x86/gcc 3.x seems to struggle a bit, so leave them disabled by default.  */
115 //#define USE_SOFTFLOAT_STRUCT_TYPES
116 #ifdef USE_SOFTFLOAT_STRUCT_TYPES
117 typedef struct {
118     uint16_t v;
119 } float16;
120 #define float16_val(x) (((float16)(x)).v)
121 #define make_float16(x) __extension__ ({ float16 f16_val = {x}; f16_val; })
122 #define const_float16(x) { x }
123 typedef struct {
124     uint32_t v;
125 } float32;
126 /* The cast ensures an error if the wrong type is passed.  */
127 #define float32_val(x) (((float32)(x)).v)
128 #define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; })
129 #define const_float32(x) { x }
130 typedef struct {
131     uint64_t v;
132 } float64;
133 #define float64_val(x) (((float64)(x)).v)
134 #define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; })
135 #define const_float64(x) { x }
136 #else
137 typedef uint16_t float16;
138 typedef uint32_t float32;
139 typedef uint64_t float64;
140 #define float16_val(x) (x)
141 #define float32_val(x) (x)
142 #define float64_val(x) (x)
143 #define make_float16(x) (x)
144 #define make_float32(x) (x)
145 #define make_float64(x) (x)
146 #define const_float16(x) (x)
147 #define const_float32(x) (x)
148 #define const_float64(x) (x)
149 #endif
150 typedef struct {
151     uint64_t low;
152     uint16_t high;
153 } floatx80;
154 #define make_floatx80(exp, mant) ((floatx80) { mant, exp })
155 #define make_floatx80_init(exp, mant) { .low = mant, .high = exp }
156 typedef struct {
157 #ifdef HOST_WORDS_BIGENDIAN
158     uint64_t high, low;
159 #else
160     uint64_t low, high;
161 #endif
162 } float128;
163 #define make_float128(high_, low_) ((float128) { .high = high_, .low = low_ })
164 #define make_float128_init(high_, low_) { .high = high_, .low = low_ }
165 
166 /*----------------------------------------------------------------------------
167 | Software IEC/IEEE floating-point underflow tininess-detection mode.
168 *----------------------------------------------------------------------------*/
169 enum {
170     float_tininess_after_rounding  = 0,
171     float_tininess_before_rounding = 1
172 };
173 
174 /*----------------------------------------------------------------------------
175 | Software IEC/IEEE floating-point rounding mode.
176 *----------------------------------------------------------------------------*/
177 enum {
178     float_round_nearest_even = 0,
179     float_round_down         = 1,
180     float_round_up           = 2,
181     float_round_to_zero      = 3,
182     float_round_ties_away    = 4,
183 };
184 
185 /*----------------------------------------------------------------------------
186 | Software IEC/IEEE floating-point exception flags.
187 *----------------------------------------------------------------------------*/
188 enum {
189     float_flag_invalid   =  1,
190     float_flag_divbyzero =  4,
191     float_flag_overflow  =  8,
192     float_flag_underflow = 16,
193     float_flag_inexact   = 32,
194     float_flag_input_denormal = 64,
195     float_flag_output_denormal = 128
196 };
197 
198 typedef struct float_status {
199     signed char float_detect_tininess;
200     signed char float_rounding_mode;
201     uint8_t     float_exception_flags;
202     signed char floatx80_rounding_precision;
203     /* should denormalised results go to zero and set the inexact flag? */
204     flag flush_to_zero;
205     /* should denormalised inputs go to zero and set the input_denormal flag? */
206     flag flush_inputs_to_zero;
207     flag default_nan_mode;
208     flag snan_bit_is_one;
209 } float_status;
210 
211 static inline void set_float_detect_tininess(int val, float_status *status)
212 {
213     status->float_detect_tininess = val;
214 }
215 static inline void set_float_rounding_mode(int val, float_status *status)
216 {
217     status->float_rounding_mode = val;
218 }
219 static inline void set_float_exception_flags(int val, float_status *status)
220 {
221     status->float_exception_flags = val;
222 }
223 static inline void set_floatx80_rounding_precision(int val,
224                                                    float_status *status)
225 {
226     status->floatx80_rounding_precision = val;
227 }
228 static inline void set_flush_to_zero(flag val, float_status *status)
229 {
230     status->flush_to_zero = val;
231 }
232 static inline void set_flush_inputs_to_zero(flag val, float_status *status)
233 {
234     status->flush_inputs_to_zero = val;
235 }
236 static inline void set_default_nan_mode(flag val, float_status *status)
237 {
238     status->default_nan_mode = val;
239 }
240 static inline void set_snan_bit_is_one(flag val, float_status *status)
241 {
242     status->snan_bit_is_one = val;
243 }
244 static inline int get_float_detect_tininess(float_status *status)
245 {
246     return status->float_detect_tininess;
247 }
248 static inline int get_float_rounding_mode(float_status *status)
249 {
250     return status->float_rounding_mode;
251 }
252 static inline int get_float_exception_flags(float_status *status)
253 {
254     return status->float_exception_flags;
255 }
256 static inline int get_floatx80_rounding_precision(float_status *status)
257 {
258     return status->floatx80_rounding_precision;
259 }
260 static inline flag get_flush_to_zero(float_status *status)
261 {
262     return status->flush_to_zero;
263 }
264 static inline flag get_flush_inputs_to_zero(float_status *status)
265 {
266     return status->flush_inputs_to_zero;
267 }
268 static inline flag get_default_nan_mode(float_status *status)
269 {
270     return status->default_nan_mode;
271 }
272 
273 /*----------------------------------------------------------------------------
274 | Routine to raise any or all of the software IEC/IEEE floating-point
275 | exception flags.
276 *----------------------------------------------------------------------------*/
277 void float_raise(uint8_t flags, float_status *status);
278 
279 /*----------------------------------------------------------------------------
280 | If `a' is denormal and we are in flush-to-zero mode then set the
281 | input-denormal exception and return zero. Otherwise just return the value.
282 *----------------------------------------------------------------------------*/
283 float32 float32_squash_input_denormal(float32 a, float_status *status);
284 float64 float64_squash_input_denormal(float64 a, float_status *status);
285 
286 /*----------------------------------------------------------------------------
287 | Options to indicate which negations to perform in float*_muladd()
288 | Using these differs from negating an input or output before calling
289 | the muladd function in that this means that a NaN doesn't have its
290 | sign bit inverted before it is propagated.
291 | We also support halving the result before rounding, as a special
292 | case to support the ARM fused-sqrt-step instruction FRSQRTS.
293 *----------------------------------------------------------------------------*/
294 enum {
295     float_muladd_negate_c = 1,
296     float_muladd_negate_product = 2,
297     float_muladd_negate_result = 4,
298     float_muladd_halve_result = 8,
299 };
300 
301 /*----------------------------------------------------------------------------
302 | Software IEC/IEEE integer-to-floating-point conversion routines.
303 *----------------------------------------------------------------------------*/
304 float32 int32_to_float32(int32_t, float_status *status);
305 float64 int32_to_float64(int32_t, float_status *status);
306 float32 uint32_to_float32(uint32_t, float_status *status);
307 float64 uint32_to_float64(uint32_t, float_status *status);
308 floatx80 int32_to_floatx80(int32_t, float_status *status);
309 float128 int32_to_float128(int32_t, float_status *status);
310 float32 int64_to_float32(int64_t, float_status *status);
311 float64 int64_to_float64(int64_t, float_status *status);
312 floatx80 int64_to_floatx80(int64_t, float_status *status);
313 float128 int64_to_float128(int64_t, float_status *status);
314 float32 uint64_to_float32(uint64_t, float_status *status);
315 float64 uint64_to_float64(uint64_t, float_status *status);
316 float128 uint64_to_float128(uint64_t, float_status *status);
317 
318 /* We provide the int16 versions for symmetry of API with float-to-int */
319 static inline float32 int16_to_float32(int16_t v, float_status *status)
320 {
321     return int32_to_float32(v, status);
322 }
323 
324 static inline float32 uint16_to_float32(uint16_t v, float_status *status)
325 {
326     return uint32_to_float32(v, status);
327 }
328 
329 static inline float64 int16_to_float64(int16_t v, float_status *status)
330 {
331     return int32_to_float64(v, status);
332 }
333 
334 static inline float64 uint16_to_float64(uint16_t v, float_status *status)
335 {
336     return uint32_to_float64(v, status);
337 }
338 
339 /*----------------------------------------------------------------------------
340 | Software half-precision conversion routines.
341 *----------------------------------------------------------------------------*/
342 float16 float32_to_float16(float32, flag, float_status *status);
343 float32 float16_to_float32(float16, flag, float_status *status);
344 float16 float64_to_float16(float64 a, flag ieee, float_status *status);
345 float64 float16_to_float64(float16 a, flag ieee, float_status *status);
346 
347 /*----------------------------------------------------------------------------
348 | Software half-precision operations.
349 *----------------------------------------------------------------------------*/
350 int float16_is_quiet_nan(float16, float_status *status);
351 int float16_is_signaling_nan(float16, float_status *status);
352 float16 float16_maybe_silence_nan(float16, float_status *status);
353 
354 static inline int float16_is_any_nan(float16 a)
355 {
356     return ((float16_val(a) & ~0x8000) > 0x7c00);
357 }
358 
359 static inline int float16_is_neg(float16 a)
360 {
361     return float16_val(a) >> 15;
362 }
363 
364 static inline int float16_is_infinity(float16 a)
365 {
366     return (float16_val(a) & 0x7fff) == 0x7c00;
367 }
368 
369 static inline int float16_is_zero(float16 a)
370 {
371     return (float16_val(a) & 0x7fff) == 0;
372 }
373 
374 static inline int float16_is_zero_or_denormal(float16 a)
375 {
376     return (float16_val(a) & 0x7c00) == 0;
377 }
378 
379 /*----------------------------------------------------------------------------
380 | The pattern for a default generated half-precision NaN.
381 *----------------------------------------------------------------------------*/
382 float16 float16_default_nan(float_status *status);
383 
384 /*----------------------------------------------------------------------------
385 | Software IEC/IEEE single-precision conversion routines.
386 *----------------------------------------------------------------------------*/
387 int16_t float32_to_int16(float32, float_status *status);
388 uint16_t float32_to_uint16(float32, float_status *status);
389 int16_t float32_to_int16_round_to_zero(float32, float_status *status);
390 uint16_t float32_to_uint16_round_to_zero(float32, float_status *status);
391 int32_t float32_to_int32(float32, float_status *status);
392 int32_t float32_to_int32_round_to_zero(float32, float_status *status);
393 uint32_t float32_to_uint32(float32, float_status *status);
394 uint32_t float32_to_uint32_round_to_zero(float32, float_status *status);
395 int64_t float32_to_int64(float32, float_status *status);
396 uint64_t float32_to_uint64(float32, float_status *status);
397 uint64_t float32_to_uint64_round_to_zero(float32, float_status *status);
398 int64_t float32_to_int64_round_to_zero(float32, float_status *status);
399 float64 float32_to_float64(float32, float_status *status);
400 floatx80 float32_to_floatx80(float32, float_status *status);
401 float128 float32_to_float128(float32, float_status *status);
402 
403 /*----------------------------------------------------------------------------
404 | Software IEC/IEEE single-precision operations.
405 *----------------------------------------------------------------------------*/
406 float32 float32_round_to_int(float32, float_status *status);
407 float32 float32_add(float32, float32, float_status *status);
408 float32 float32_sub(float32, float32, float_status *status);
409 float32 float32_mul(float32, float32, float_status *status);
410 float32 float32_div(float32, float32, float_status *status);
411 float32 float32_rem(float32, float32, float_status *status);
412 float32 float32_muladd(float32, float32, float32, int, float_status *status);
413 float32 float32_sqrt(float32, float_status *status);
414 float32 float32_exp2(float32, float_status *status);
415 float32 float32_log2(float32, float_status *status);
416 int float32_eq(float32, float32, float_status *status);
417 int float32_le(float32, float32, float_status *status);
418 int float32_lt(float32, float32, float_status *status);
419 int float32_unordered(float32, float32, float_status *status);
420 int float32_eq_quiet(float32, float32, float_status *status);
421 int float32_le_quiet(float32, float32, float_status *status);
422 int float32_lt_quiet(float32, float32, float_status *status);
423 int float32_unordered_quiet(float32, float32, float_status *status);
424 int float32_compare(float32, float32, float_status *status);
425 int float32_compare_quiet(float32, float32, float_status *status);
426 float32 float32_min(float32, float32, float_status *status);
427 float32 float32_max(float32, float32, float_status *status);
428 float32 float32_minnum(float32, float32, float_status *status);
429 float32 float32_maxnum(float32, float32, float_status *status);
430 float32 float32_minnummag(float32, float32, float_status *status);
431 float32 float32_maxnummag(float32, float32, float_status *status);
432 int float32_is_quiet_nan(float32, float_status *status);
433 int float32_is_signaling_nan(float32, float_status *status);
434 float32 float32_maybe_silence_nan(float32, float_status *status);
435 float32 float32_scalbn(float32, int, float_status *status);
436 
437 static inline float32 float32_abs(float32 a)
438 {
439     /* Note that abs does *not* handle NaN specially, nor does
440      * it flush denormal inputs to zero.
441      */
442     return make_float32(float32_val(a) & 0x7fffffff);
443 }
444 
445 static inline float32 float32_chs(float32 a)
446 {
447     /* Note that chs does *not* handle NaN specially, nor does
448      * it flush denormal inputs to zero.
449      */
450     return make_float32(float32_val(a) ^ 0x80000000);
451 }
452 
453 static inline int float32_is_infinity(float32 a)
454 {
455     return (float32_val(a) & 0x7fffffff) == 0x7f800000;
456 }
457 
458 static inline int float32_is_neg(float32 a)
459 {
460     return float32_val(a) >> 31;
461 }
462 
463 static inline int float32_is_zero(float32 a)
464 {
465     return (float32_val(a) & 0x7fffffff) == 0;
466 }
467 
468 static inline int float32_is_any_nan(float32 a)
469 {
470     return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL);
471 }
472 
473 static inline int float32_is_zero_or_denormal(float32 a)
474 {
475     return (float32_val(a) & 0x7f800000) == 0;
476 }
477 
478 static inline float32 float32_set_sign(float32 a, int sign)
479 {
480     return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31));
481 }
482 
483 #define float32_zero make_float32(0)
484 #define float32_one make_float32(0x3f800000)
485 #define float32_ln2 make_float32(0x3f317218)
486 #define float32_pi make_float32(0x40490fdb)
487 #define float32_half make_float32(0x3f000000)
488 #define float32_infinity make_float32(0x7f800000)
489 
490 
491 /*----------------------------------------------------------------------------
492 | The pattern for a default generated single-precision NaN.
493 *----------------------------------------------------------------------------*/
494 float32 float32_default_nan(float_status *status);
495 
496 /*----------------------------------------------------------------------------
497 | Software IEC/IEEE double-precision conversion routines.
498 *----------------------------------------------------------------------------*/
499 int16_t float64_to_int16(float64, float_status *status);
500 uint16_t float64_to_uint16(float64, float_status *status);
501 int16_t float64_to_int16_round_to_zero(float64, float_status *status);
502 uint16_t float64_to_uint16_round_to_zero(float64, float_status *status);
503 int32_t float64_to_int32(float64, float_status *status);
504 int32_t float64_to_int32_round_to_zero(float64, float_status *status);
505 uint32_t float64_to_uint32(float64, float_status *status);
506 uint32_t float64_to_uint32_round_to_zero(float64, float_status *status);
507 int64_t float64_to_int64(float64, float_status *status);
508 int64_t float64_to_int64_round_to_zero(float64, float_status *status);
509 uint64_t float64_to_uint64(float64 a, float_status *status);
510 uint64_t float64_to_uint64_round_to_zero(float64 a, float_status *status);
511 float32 float64_to_float32(float64, float_status *status);
512 floatx80 float64_to_floatx80(float64, float_status *status);
513 float128 float64_to_float128(float64, float_status *status);
514 
515 /*----------------------------------------------------------------------------
516 | Software IEC/IEEE double-precision operations.
517 *----------------------------------------------------------------------------*/
518 float64 float64_round_to_int(float64, float_status *status);
519 float64 float64_trunc_to_int(float64, float_status *status);
520 float64 float64_add(float64, float64, float_status *status);
521 float64 float64_sub(float64, float64, float_status *status);
522 float64 float64_mul(float64, float64, float_status *status);
523 float64 float64_div(float64, float64, float_status *status);
524 float64 float64_rem(float64, float64, float_status *status);
525 float64 float64_muladd(float64, float64, float64, int, float_status *status);
526 float64 float64_sqrt(float64, float_status *status);
527 float64 float64_log2(float64, float_status *status);
528 int float64_eq(float64, float64, float_status *status);
529 int float64_le(float64, float64, float_status *status);
530 int float64_lt(float64, float64, float_status *status);
531 int float64_unordered(float64, float64, float_status *status);
532 int float64_eq_quiet(float64, float64, float_status *status);
533 int float64_le_quiet(float64, float64, float_status *status);
534 int float64_lt_quiet(float64, float64, float_status *status);
535 int float64_unordered_quiet(float64, float64, float_status *status);
536 int float64_compare(float64, float64, float_status *status);
537 int float64_compare_quiet(float64, float64, float_status *status);
538 float64 float64_min(float64, float64, float_status *status);
539 float64 float64_max(float64, float64, float_status *status);
540 float64 float64_minnum(float64, float64, float_status *status);
541 float64 float64_maxnum(float64, float64, float_status *status);
542 float64 float64_minnummag(float64, float64, float_status *status);
543 float64 float64_maxnummag(float64, float64, float_status *status);
544 int float64_is_quiet_nan(float64 a, float_status *status);
545 int float64_is_signaling_nan(float64, float_status *status);
546 float64 float64_maybe_silence_nan(float64, float_status *status);
547 float64 float64_scalbn(float64, int, float_status *status);
548 
549 static inline float64 float64_abs(float64 a)
550 {
551     /* Note that abs does *not* handle NaN specially, nor does
552      * it flush denormal inputs to zero.
553      */
554     return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
555 }
556 
557 static inline float64 float64_chs(float64 a)
558 {
559     /* Note that chs does *not* handle NaN specially, nor does
560      * it flush denormal inputs to zero.
561      */
562     return make_float64(float64_val(a) ^ 0x8000000000000000LL);
563 }
564 
565 static inline int float64_is_infinity(float64 a)
566 {
567     return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
568 }
569 
570 static inline int float64_is_neg(float64 a)
571 {
572     return float64_val(a) >> 63;
573 }
574 
575 static inline int float64_is_zero(float64 a)
576 {
577     return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
578 }
579 
580 static inline int float64_is_any_nan(float64 a)
581 {
582     return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL);
583 }
584 
585 static inline int float64_is_zero_or_denormal(float64 a)
586 {
587     return (float64_val(a) & 0x7ff0000000000000LL) == 0;
588 }
589 
590 static inline float64 float64_set_sign(float64 a, int sign)
591 {
592     return make_float64((float64_val(a) & 0x7fffffffffffffffULL)
593                         | ((int64_t)sign << 63));
594 }
595 
596 #define float64_zero make_float64(0)
597 #define float64_one make_float64(0x3ff0000000000000LL)
598 #define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
599 #define float64_pi make_float64(0x400921fb54442d18LL)
600 #define float64_half make_float64(0x3fe0000000000000LL)
601 #define float64_infinity make_float64(0x7ff0000000000000LL)
602 
603 /*----------------------------------------------------------------------------
604 | The pattern for a default generated double-precision NaN.
605 *----------------------------------------------------------------------------*/
606 float64 float64_default_nan(float_status *status);
607 
608 /*----------------------------------------------------------------------------
609 | Software IEC/IEEE extended double-precision conversion routines.
610 *----------------------------------------------------------------------------*/
611 int32_t floatx80_to_int32(floatx80, float_status *status);
612 int32_t floatx80_to_int32_round_to_zero(floatx80, float_status *status);
613 int64_t floatx80_to_int64(floatx80, float_status *status);
614 int64_t floatx80_to_int64_round_to_zero(floatx80, float_status *status);
615 float32 floatx80_to_float32(floatx80, float_status *status);
616 float64 floatx80_to_float64(floatx80, float_status *status);
617 float128 floatx80_to_float128(floatx80, float_status *status);
618 
619 /*----------------------------------------------------------------------------
620 | Software IEC/IEEE extended double-precision operations.
621 *----------------------------------------------------------------------------*/
622 floatx80 floatx80_round_to_int(floatx80, float_status *status);
623 floatx80 floatx80_add(floatx80, floatx80, float_status *status);
624 floatx80 floatx80_sub(floatx80, floatx80, float_status *status);
625 floatx80 floatx80_mul(floatx80, floatx80, float_status *status);
626 floatx80 floatx80_div(floatx80, floatx80, float_status *status);
627 floatx80 floatx80_rem(floatx80, floatx80, float_status *status);
628 floatx80 floatx80_sqrt(floatx80, float_status *status);
629 int floatx80_eq(floatx80, floatx80, float_status *status);
630 int floatx80_le(floatx80, floatx80, float_status *status);
631 int floatx80_lt(floatx80, floatx80, float_status *status);
632 int floatx80_unordered(floatx80, floatx80, float_status *status);
633 int floatx80_eq_quiet(floatx80, floatx80, float_status *status);
634 int floatx80_le_quiet(floatx80, floatx80, float_status *status);
635 int floatx80_lt_quiet(floatx80, floatx80, float_status *status);
636 int floatx80_unordered_quiet(floatx80, floatx80, float_status *status);
637 int floatx80_compare(floatx80, floatx80, float_status *status);
638 int floatx80_compare_quiet(floatx80, floatx80, float_status *status);
639 int floatx80_is_quiet_nan(floatx80, float_status *status);
640 int floatx80_is_signaling_nan(floatx80, float_status *status);
641 floatx80 floatx80_maybe_silence_nan(floatx80, float_status *status);
642 floatx80 floatx80_scalbn(floatx80, int, float_status *status);
643 
644 static inline floatx80 floatx80_abs(floatx80 a)
645 {
646     a.high &= 0x7fff;
647     return a;
648 }
649 
650 static inline floatx80 floatx80_chs(floatx80 a)
651 {
652     a.high ^= 0x8000;
653     return a;
654 }
655 
656 static inline int floatx80_is_infinity(floatx80 a)
657 {
658     return (a.high & 0x7fff) == 0x7fff && a.low == 0x8000000000000000LL;
659 }
660 
661 static inline int floatx80_is_neg(floatx80 a)
662 {
663     return a.high >> 15;
664 }
665 
666 static inline int floatx80_is_zero(floatx80 a)
667 {
668     return (a.high & 0x7fff) == 0 && a.low == 0;
669 }
670 
671 static inline int floatx80_is_zero_or_denormal(floatx80 a)
672 {
673     return (a.high & 0x7fff) == 0;
674 }
675 
676 static inline int floatx80_is_any_nan(floatx80 a)
677 {
678     return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1);
679 }
680 
681 /*----------------------------------------------------------------------------
682 | Return whether the given value is an invalid floatx80 encoding.
683 | Invalid floatx80 encodings arise when the integer bit is not set, but
684 | the exponent is not zero. The only times the integer bit is permitted to
685 | be zero is in subnormal numbers and the value zero.
686 | This includes what the Intel software developer's manual calls pseudo-NaNs,
687 | pseudo-infinities and un-normal numbers. It does not include
688 | pseudo-denormals, which must still be correctly handled as inputs even
689 | if they are never generated as outputs.
690 *----------------------------------------------------------------------------*/
691 static inline bool floatx80_invalid_encoding(floatx80 a)
692 {
693     return (a.low & (1ULL << 63)) == 0 && (a.high & 0x7FFF) != 0;
694 }
695 
696 #define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL)
697 #define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL)
698 #define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL)
699 #define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL)
700 #define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL)
701 #define floatx80_infinity make_floatx80(0x7fff, 0x8000000000000000LL)
702 
703 /*----------------------------------------------------------------------------
704 | The pattern for a default generated extended double-precision NaN.
705 *----------------------------------------------------------------------------*/
706 floatx80 floatx80_default_nan(float_status *status);
707 
708 /*----------------------------------------------------------------------------
709 | Software IEC/IEEE quadruple-precision conversion routines.
710 *----------------------------------------------------------------------------*/
711 int32_t float128_to_int32(float128, float_status *status);
712 int32_t float128_to_int32_round_to_zero(float128, float_status *status);
713 int64_t float128_to_int64(float128, float_status *status);
714 int64_t float128_to_int64_round_to_zero(float128, float_status *status);
715 float32 float128_to_float32(float128, float_status *status);
716 float64 float128_to_float64(float128, float_status *status);
717 floatx80 float128_to_floatx80(float128, float_status *status);
718 
719 /*----------------------------------------------------------------------------
720 | Software IEC/IEEE quadruple-precision operations.
721 *----------------------------------------------------------------------------*/
722 float128 float128_round_to_int(float128, float_status *status);
723 float128 float128_add(float128, float128, float_status *status);
724 float128 float128_sub(float128, float128, float_status *status);
725 float128 float128_mul(float128, float128, float_status *status);
726 float128 float128_div(float128, float128, float_status *status);
727 float128 float128_rem(float128, float128, float_status *status);
728 float128 float128_sqrt(float128, float_status *status);
729 int float128_eq(float128, float128, float_status *status);
730 int float128_le(float128, float128, float_status *status);
731 int float128_lt(float128, float128, float_status *status);
732 int float128_unordered(float128, float128, float_status *status);
733 int float128_eq_quiet(float128, float128, float_status *status);
734 int float128_le_quiet(float128, float128, float_status *status);
735 int float128_lt_quiet(float128, float128, float_status *status);
736 int float128_unordered_quiet(float128, float128, float_status *status);
737 int float128_compare(float128, float128, float_status *status);
738 int float128_compare_quiet(float128, float128, float_status *status);
739 int float128_is_quiet_nan(float128, float_status *status);
740 int float128_is_signaling_nan(float128, float_status *status);
741 float128 float128_maybe_silence_nan(float128, float_status *status);
742 float128 float128_scalbn(float128, int, float_status *status);
743 
744 static inline float128 float128_abs(float128 a)
745 {
746     a.high &= 0x7fffffffffffffffLL;
747     return a;
748 }
749 
750 static inline float128 float128_chs(float128 a)
751 {
752     a.high ^= 0x8000000000000000LL;
753     return a;
754 }
755 
756 static inline int float128_is_infinity(float128 a)
757 {
758     return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
759 }
760 
761 static inline int float128_is_neg(float128 a)
762 {
763     return a.high >> 63;
764 }
765 
766 static inline int float128_is_zero(float128 a)
767 {
768     return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
769 }
770 
771 static inline int float128_is_zero_or_denormal(float128 a)
772 {
773     return (a.high & 0x7fff000000000000LL) == 0;
774 }
775 
776 static inline int float128_is_any_nan(float128 a)
777 {
778     return ((a.high >> 48) & 0x7fff) == 0x7fff &&
779         ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0));
780 }
781 
782 #define float128_zero make_float128(0, 0)
783 
784 /*----------------------------------------------------------------------------
785 | The pattern for a default generated quadruple-precision NaN.
786 *----------------------------------------------------------------------------*/
787 float128 float128_default_nan(float_status *status);
788 
789 #endif /* SOFTFLOAT_H */
790