xref: /qemu/target/sh4/helper.c (revision abff1abf)
1 /*
2  *  SH4 emulation
3  *
4  *  Copyright (c) 2005 Samuel Tardieu
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 
22 #include "cpu.h"
23 #include "exec/exec-all.h"
24 #include "exec/log.h"
25 
26 #if !defined(CONFIG_USER_ONLY)
27 #include "hw/sh4/sh_intc.h"
28 #include "sysemu/runstate.h"
29 #endif
30 
31 #define MMU_OK                   0
32 #define MMU_ITLB_MISS            (-1)
33 #define MMU_ITLB_MULTIPLE        (-2)
34 #define MMU_ITLB_VIOLATION       (-3)
35 #define MMU_DTLB_MISS_READ       (-4)
36 #define MMU_DTLB_MISS_WRITE      (-5)
37 #define MMU_DTLB_INITIAL_WRITE   (-6)
38 #define MMU_DTLB_VIOLATION_READ  (-7)
39 #define MMU_DTLB_VIOLATION_WRITE (-8)
40 #define MMU_DTLB_MULTIPLE        (-9)
41 #define MMU_DTLB_MISS            (-10)
42 #define MMU_IADDR_ERROR          (-11)
43 #define MMU_DADDR_ERROR_READ     (-12)
44 #define MMU_DADDR_ERROR_WRITE    (-13)
45 
46 #if defined(CONFIG_USER_ONLY)
47 
48 void superh_cpu_do_interrupt(CPUState *cs)
49 {
50     cs->exception_index = -1;
51 }
52 
53 int cpu_sh4_is_cached(CPUSH4State *env, target_ulong addr)
54 {
55     /* For user mode, only U0 area is cacheable. */
56     return !(addr & 0x80000000);
57 }
58 
59 #else /* !CONFIG_USER_ONLY */
60 
61 void superh_cpu_do_interrupt(CPUState *cs)
62 {
63     SuperHCPU *cpu = SUPERH_CPU(cs);
64     CPUSH4State *env = &cpu->env;
65     int do_irq = cs->interrupt_request & CPU_INTERRUPT_HARD;
66     int do_exp, irq_vector = cs->exception_index;
67 
68     /* prioritize exceptions over interrupts */
69 
70     do_exp = cs->exception_index != -1;
71     do_irq = do_irq && (cs->exception_index == -1);
72 
73     if (env->sr & (1u << SR_BL)) {
74         if (do_exp && cs->exception_index != 0x1e0) {
75             /* In theory a masked exception generates a reset exception,
76                which in turn jumps to the reset vector. However this only
77                works when using a bootloader. When using a kernel and an
78                initrd, they need to be reloaded and the program counter
79                should be loaded with the kernel entry point.
80                qemu_system_reset_request takes care of that.  */
81             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
82             return;
83         }
84         if (do_irq && !env->in_sleep) {
85             return; /* masked */
86         }
87     }
88     env->in_sleep = 0;
89 
90     if (do_irq) {
91         irq_vector = sh_intc_get_pending_vector(env->intc_handle,
92 						(env->sr >> 4) & 0xf);
93         if (irq_vector == -1) {
94             return; /* masked */
95 	}
96     }
97 
98     if (qemu_loglevel_mask(CPU_LOG_INT)) {
99 	const char *expname;
100         switch (cs->exception_index) {
101 	case 0x0e0:
102 	    expname = "addr_error";
103 	    break;
104 	case 0x040:
105 	    expname = "tlb_miss";
106 	    break;
107 	case 0x0a0:
108 	    expname = "tlb_violation";
109 	    break;
110 	case 0x180:
111 	    expname = "illegal_instruction";
112 	    break;
113 	case 0x1a0:
114 	    expname = "slot_illegal_instruction";
115 	    break;
116 	case 0x800:
117 	    expname = "fpu_disable";
118 	    break;
119 	case 0x820:
120 	    expname = "slot_fpu";
121 	    break;
122 	case 0x100:
123 	    expname = "data_write";
124 	    break;
125 	case 0x060:
126 	    expname = "dtlb_miss_write";
127 	    break;
128 	case 0x0c0:
129 	    expname = "dtlb_violation_write";
130 	    break;
131 	case 0x120:
132 	    expname = "fpu_exception";
133 	    break;
134 	case 0x080:
135 	    expname = "initial_page_write";
136 	    break;
137 	case 0x160:
138 	    expname = "trapa";
139 	    break;
140 	default:
141             expname = do_irq ? "interrupt" : "???";
142             break;
143 	}
144 	qemu_log("exception 0x%03x [%s] raised\n",
145 		  irq_vector, expname);
146         log_cpu_state(cs, 0);
147     }
148 
149     env->ssr = cpu_read_sr(env);
150     env->spc = env->pc;
151     env->sgr = env->gregs[15];
152     env->sr |= (1u << SR_BL) | (1u << SR_MD) | (1u << SR_RB);
153     env->lock_addr = -1;
154 
155     if (env->flags & DELAY_SLOT_MASK) {
156         /* Branch instruction should be executed again before delay slot. */
157 	env->spc -= 2;
158 	/* Clear flags for exception/interrupt routine. */
159         env->flags &= ~DELAY_SLOT_MASK;
160     }
161 
162     if (do_exp) {
163         env->expevt = cs->exception_index;
164         switch (cs->exception_index) {
165         case 0x000:
166         case 0x020:
167         case 0x140:
168             env->sr &= ~(1u << SR_FD);
169             env->sr |= 0xf << 4; /* IMASK */
170             env->pc = 0xa0000000;
171             break;
172         case 0x040:
173         case 0x060:
174             env->pc = env->vbr + 0x400;
175             break;
176         case 0x160:
177             env->spc += 2; /* special case for TRAPA */
178             /* fall through */
179         default:
180             env->pc = env->vbr + 0x100;
181             break;
182         }
183         return;
184     }
185 
186     if (do_irq) {
187         env->intevt = irq_vector;
188         env->pc = env->vbr + 0x600;
189         return;
190     }
191 }
192 
193 static void update_itlb_use(CPUSH4State * env, int itlbnb)
194 {
195     uint8_t or_mask = 0, and_mask = (uint8_t) - 1;
196 
197     switch (itlbnb) {
198     case 0:
199 	and_mask = 0x1f;
200 	break;
201     case 1:
202 	and_mask = 0xe7;
203 	or_mask = 0x80;
204 	break;
205     case 2:
206 	and_mask = 0xfb;
207 	or_mask = 0x50;
208 	break;
209     case 3:
210 	or_mask = 0x2c;
211 	break;
212     }
213 
214     env->mmucr &= (and_mask << 24) | 0x00ffffff;
215     env->mmucr |= (or_mask << 24);
216 }
217 
218 static int itlb_replacement(CPUSH4State * env)
219 {
220     if ((env->mmucr & 0xe0000000) == 0xe0000000) {
221 	return 0;
222     }
223     if ((env->mmucr & 0x98000000) == 0x18000000) {
224 	return 1;
225     }
226     if ((env->mmucr & 0x54000000) == 0x04000000) {
227 	return 2;
228     }
229     if ((env->mmucr & 0x2c000000) == 0x00000000) {
230 	return 3;
231     }
232     cpu_abort(env_cpu(env), "Unhandled itlb_replacement");
233 }
234 
235 /* Find the corresponding entry in the right TLB
236    Return entry, MMU_DTLB_MISS or MMU_DTLB_MULTIPLE
237 */
238 static int find_tlb_entry(CPUSH4State * env, target_ulong address,
239 			  tlb_t * entries, uint8_t nbtlb, int use_asid)
240 {
241     int match = MMU_DTLB_MISS;
242     uint32_t start, end;
243     uint8_t asid;
244     int i;
245 
246     asid = env->pteh & 0xff;
247 
248     for (i = 0; i < nbtlb; i++) {
249 	if (!entries[i].v)
250 	    continue;		/* Invalid entry */
251 	if (!entries[i].sh && use_asid && entries[i].asid != asid)
252 	    continue;		/* Bad ASID */
253 	start = (entries[i].vpn << 10) & ~(entries[i].size - 1);
254 	end = start + entries[i].size - 1;
255 	if (address >= start && address <= end) {	/* Match */
256 	    if (match != MMU_DTLB_MISS)
257 		return MMU_DTLB_MULTIPLE;	/* Multiple match */
258 	    match = i;
259 	}
260     }
261     return match;
262 }
263 
264 static void increment_urc(CPUSH4State * env)
265 {
266     uint8_t urb, urc;
267 
268     /* Increment URC */
269     urb = ((env->mmucr) >> 18) & 0x3f;
270     urc = ((env->mmucr) >> 10) & 0x3f;
271     urc++;
272     if ((urb > 0 && urc > urb) || urc > (UTLB_SIZE - 1))
273 	urc = 0;
274     env->mmucr = (env->mmucr & 0xffff03ff) | (urc << 10);
275 }
276 
277 /* Copy and utlb entry into itlb
278    Return entry
279 */
280 static int copy_utlb_entry_itlb(CPUSH4State *env, int utlb)
281 {
282     int itlb;
283 
284     tlb_t * ientry;
285     itlb = itlb_replacement(env);
286     ientry = &env->itlb[itlb];
287     if (ientry->v) {
288         tlb_flush_page(env_cpu(env), ientry->vpn << 10);
289     }
290     *ientry = env->utlb[utlb];
291     update_itlb_use(env, itlb);
292     return itlb;
293 }
294 
295 /* Find itlb entry
296    Return entry, MMU_ITLB_MISS, MMU_ITLB_MULTIPLE or MMU_DTLB_MULTIPLE
297 */
298 static int find_itlb_entry(CPUSH4State * env, target_ulong address,
299                            int use_asid)
300 {
301     int e;
302 
303     e = find_tlb_entry(env, address, env->itlb, ITLB_SIZE, use_asid);
304     if (e == MMU_DTLB_MULTIPLE) {
305 	e = MMU_ITLB_MULTIPLE;
306     } else if (e == MMU_DTLB_MISS) {
307 	e = MMU_ITLB_MISS;
308     } else if (e >= 0) {
309 	update_itlb_use(env, e);
310     }
311     return e;
312 }
313 
314 /* Find utlb entry
315    Return entry, MMU_DTLB_MISS, MMU_DTLB_MULTIPLE */
316 static int find_utlb_entry(CPUSH4State * env, target_ulong address, int use_asid)
317 {
318     /* per utlb access */
319     increment_urc(env);
320 
321     /* Return entry */
322     return find_tlb_entry(env, address, env->utlb, UTLB_SIZE, use_asid);
323 }
324 
325 /* Match address against MMU
326    Return MMU_OK, MMU_DTLB_MISS_READ, MMU_DTLB_MISS_WRITE,
327    MMU_DTLB_INITIAL_WRITE, MMU_DTLB_VIOLATION_READ,
328    MMU_DTLB_VIOLATION_WRITE, MMU_ITLB_MISS,
329    MMU_ITLB_MULTIPLE, MMU_ITLB_VIOLATION,
330    MMU_IADDR_ERROR, MMU_DADDR_ERROR_READ, MMU_DADDR_ERROR_WRITE.
331 */
332 static int get_mmu_address(CPUSH4State * env, target_ulong * physical,
333 			   int *prot, target_ulong address,
334 			   int rw, int access_type)
335 {
336     int use_asid, n;
337     tlb_t *matching = NULL;
338 
339     use_asid = !(env->mmucr & MMUCR_SV) || !(env->sr & (1u << SR_MD));
340 
341     if (rw == 2) {
342         n = find_itlb_entry(env, address, use_asid);
343 	if (n >= 0) {
344 	    matching = &env->itlb[n];
345             if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) {
346 		n = MMU_ITLB_VIOLATION;
347             } else {
348 		*prot = PAGE_EXEC;
349             }
350         } else {
351             n = find_utlb_entry(env, address, use_asid);
352             if (n >= 0) {
353                 n = copy_utlb_entry_itlb(env, n);
354                 matching = &env->itlb[n];
355                 if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) {
356                     n = MMU_ITLB_VIOLATION;
357                 } else {
358                     *prot = PAGE_READ | PAGE_EXEC;
359                     if ((matching->pr & 1) && matching->d) {
360                         *prot |= PAGE_WRITE;
361                     }
362                 }
363             } else if (n == MMU_DTLB_MULTIPLE) {
364                 n = MMU_ITLB_MULTIPLE;
365             } else if (n == MMU_DTLB_MISS) {
366                 n = MMU_ITLB_MISS;
367             }
368 	}
369     } else {
370 	n = find_utlb_entry(env, address, use_asid);
371 	if (n >= 0) {
372 	    matching = &env->utlb[n];
373             if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) {
374                 n = (rw == 1) ? MMU_DTLB_VIOLATION_WRITE :
375                     MMU_DTLB_VIOLATION_READ;
376             } else if ((rw == 1) && !(matching->pr & 1)) {
377                 n = MMU_DTLB_VIOLATION_WRITE;
378             } else if ((rw == 1) && !matching->d) {
379                 n = MMU_DTLB_INITIAL_WRITE;
380             } else {
381                 *prot = PAGE_READ;
382                 if ((matching->pr & 1) && matching->d) {
383                     *prot |= PAGE_WRITE;
384                 }
385             }
386 	} else if (n == MMU_DTLB_MISS) {
387 	    n = (rw == 1) ? MMU_DTLB_MISS_WRITE :
388 		MMU_DTLB_MISS_READ;
389 	}
390     }
391     if (n >= 0) {
392 	n = MMU_OK;
393 	*physical = ((matching->ppn << 10) & ~(matching->size - 1)) |
394 	    (address & (matching->size - 1));
395     }
396     return n;
397 }
398 
399 static int get_physical_address(CPUSH4State * env, target_ulong * physical,
400                                 int *prot, target_ulong address,
401                                 int rw, int access_type)
402 {
403     /* P1, P2 and P4 areas do not use translation */
404     if ((address >= 0x80000000 && address < 0xc0000000) ||
405 	address >= 0xe0000000) {
406         if (!(env->sr & (1u << SR_MD))
407 	    && (address < 0xe0000000 || address >= 0xe4000000)) {
408 	    /* Unauthorized access in user mode (only store queues are available) */
409             qemu_log_mask(LOG_GUEST_ERROR, "Unauthorized access\n");
410 	    if (rw == 0)
411 		return MMU_DADDR_ERROR_READ;
412 	    else if (rw == 1)
413 		return MMU_DADDR_ERROR_WRITE;
414 	    else
415 		return MMU_IADDR_ERROR;
416 	}
417 	if (address >= 0x80000000 && address < 0xc0000000) {
418 	    /* Mask upper 3 bits for P1 and P2 areas */
419 	    *physical = address & 0x1fffffff;
420 	} else {
421 	    *physical = address;
422 	}
423 	*prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
424 	return MMU_OK;
425     }
426 
427     /* If MMU is disabled, return the corresponding physical page */
428     if (!(env->mmucr & MMUCR_AT)) {
429 	*physical = address & 0x1FFFFFFF;
430 	*prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
431 	return MMU_OK;
432     }
433 
434     /* We need to resort to the MMU */
435     return get_mmu_address(env, physical, prot, address, rw, access_type);
436 }
437 
438 hwaddr superh_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
439 {
440     SuperHCPU *cpu = SUPERH_CPU(cs);
441     target_ulong physical;
442     int prot;
443 
444     get_physical_address(&cpu->env, &physical, &prot, addr, 0, 0);
445     return physical;
446 }
447 
448 void cpu_load_tlb(CPUSH4State * env)
449 {
450     CPUState *cs = env_cpu(env);
451     int n = cpu_mmucr_urc(env->mmucr);
452     tlb_t * entry = &env->utlb[n];
453 
454     if (entry->v) {
455         /* Overwriting valid entry in utlb. */
456         target_ulong address = entry->vpn << 10;
457         tlb_flush_page(cs, address);
458     }
459 
460     /* Take values into cpu status from registers. */
461     entry->asid = (uint8_t)cpu_pteh_asid(env->pteh);
462     entry->vpn  = cpu_pteh_vpn(env->pteh);
463     entry->v    = (uint8_t)cpu_ptel_v(env->ptel);
464     entry->ppn  = cpu_ptel_ppn(env->ptel);
465     entry->sz   = (uint8_t)cpu_ptel_sz(env->ptel);
466     switch (entry->sz) {
467     case 0: /* 00 */
468         entry->size = 1024; /* 1K */
469         break;
470     case 1: /* 01 */
471         entry->size = 1024 * 4; /* 4K */
472         break;
473     case 2: /* 10 */
474         entry->size = 1024 * 64; /* 64K */
475         break;
476     case 3: /* 11 */
477         entry->size = 1024 * 1024; /* 1M */
478         break;
479     default:
480         cpu_abort(cs, "Unhandled load_tlb");
481         break;
482     }
483     entry->sh   = (uint8_t)cpu_ptel_sh(env->ptel);
484     entry->c    = (uint8_t)cpu_ptel_c(env->ptel);
485     entry->pr   = (uint8_t)cpu_ptel_pr(env->ptel);
486     entry->d    = (uint8_t)cpu_ptel_d(env->ptel);
487     entry->wt   = (uint8_t)cpu_ptel_wt(env->ptel);
488     entry->sa   = (uint8_t)cpu_ptea_sa(env->ptea);
489     entry->tc   = (uint8_t)cpu_ptea_tc(env->ptea);
490 }
491 
492  void cpu_sh4_invalidate_tlb(CPUSH4State *s)
493 {
494     int i;
495 
496     /* UTLB */
497     for (i = 0; i < UTLB_SIZE; i++) {
498         tlb_t * entry = &s->utlb[i];
499         entry->v = 0;
500     }
501     /* ITLB */
502     for (i = 0; i < ITLB_SIZE; i++) {
503         tlb_t * entry = &s->itlb[i];
504         entry->v = 0;
505     }
506 
507     tlb_flush(env_cpu(s));
508 }
509 
510 uint32_t cpu_sh4_read_mmaped_itlb_addr(CPUSH4State *s,
511                                        hwaddr addr)
512 {
513     int index = (addr & 0x00000300) >> 8;
514     tlb_t * entry = &s->itlb[index];
515 
516     return (entry->vpn  << 10) |
517            (entry->v    <<  8) |
518            (entry->asid);
519 }
520 
521 void cpu_sh4_write_mmaped_itlb_addr(CPUSH4State *s, hwaddr addr,
522 				    uint32_t mem_value)
523 {
524     uint32_t vpn = (mem_value & 0xfffffc00) >> 10;
525     uint8_t v = (uint8_t)((mem_value & 0x00000100) >> 8);
526     uint8_t asid = (uint8_t)(mem_value & 0x000000ff);
527 
528     int index = (addr & 0x00000300) >> 8;
529     tlb_t * entry = &s->itlb[index];
530     if (entry->v) {
531         /* Overwriting valid entry in itlb. */
532         target_ulong address = entry->vpn << 10;
533         tlb_flush_page(env_cpu(s), address);
534     }
535     entry->asid = asid;
536     entry->vpn = vpn;
537     entry->v = v;
538 }
539 
540 uint32_t cpu_sh4_read_mmaped_itlb_data(CPUSH4State *s,
541                                        hwaddr addr)
542 {
543     int array = (addr & 0x00800000) >> 23;
544     int index = (addr & 0x00000300) >> 8;
545     tlb_t * entry = &s->itlb[index];
546 
547     if (array == 0) {
548         /* ITLB Data Array 1 */
549         return (entry->ppn << 10) |
550                (entry->v   <<  8) |
551                (entry->pr  <<  5) |
552                ((entry->sz & 1) <<  6) |
553                ((entry->sz & 2) <<  4) |
554                (entry->c   <<  3) |
555                (entry->sh  <<  1);
556     } else {
557         /* ITLB Data Array 2 */
558         return (entry->tc << 1) |
559                (entry->sa);
560     }
561 }
562 
563 void cpu_sh4_write_mmaped_itlb_data(CPUSH4State *s, hwaddr addr,
564                                     uint32_t mem_value)
565 {
566     int array = (addr & 0x00800000) >> 23;
567     int index = (addr & 0x00000300) >> 8;
568     tlb_t * entry = &s->itlb[index];
569 
570     if (array == 0) {
571         /* ITLB Data Array 1 */
572         if (entry->v) {
573             /* Overwriting valid entry in utlb. */
574             target_ulong address = entry->vpn << 10;
575             tlb_flush_page(env_cpu(s), address);
576         }
577         entry->ppn = (mem_value & 0x1ffffc00) >> 10;
578         entry->v   = (mem_value & 0x00000100) >> 8;
579         entry->sz  = (mem_value & 0x00000080) >> 6 |
580                      (mem_value & 0x00000010) >> 4;
581         entry->pr  = (mem_value & 0x00000040) >> 5;
582         entry->c   = (mem_value & 0x00000008) >> 3;
583         entry->sh  = (mem_value & 0x00000002) >> 1;
584     } else {
585         /* ITLB Data Array 2 */
586         entry->tc  = (mem_value & 0x00000008) >> 3;
587         entry->sa  = (mem_value & 0x00000007);
588     }
589 }
590 
591 uint32_t cpu_sh4_read_mmaped_utlb_addr(CPUSH4State *s,
592                                        hwaddr addr)
593 {
594     int index = (addr & 0x00003f00) >> 8;
595     tlb_t * entry = &s->utlb[index];
596 
597     increment_urc(s); /* per utlb access */
598 
599     return (entry->vpn  << 10) |
600            (entry->v    <<  8) |
601            (entry->asid);
602 }
603 
604 void cpu_sh4_write_mmaped_utlb_addr(CPUSH4State *s, hwaddr addr,
605 				    uint32_t mem_value)
606 {
607     int associate = addr & 0x0000080;
608     uint32_t vpn = (mem_value & 0xfffffc00) >> 10;
609     uint8_t d = (uint8_t)((mem_value & 0x00000200) >> 9);
610     uint8_t v = (uint8_t)((mem_value & 0x00000100) >> 8);
611     uint8_t asid = (uint8_t)(mem_value & 0x000000ff);
612     int use_asid = !(s->mmucr & MMUCR_SV) || !(s->sr & (1u << SR_MD));
613 
614     if (associate) {
615         int i;
616 	tlb_t * utlb_match_entry = NULL;
617 	int needs_tlb_flush = 0;
618 
619 	/* search UTLB */
620 	for (i = 0; i < UTLB_SIZE; i++) {
621             tlb_t * entry = &s->utlb[i];
622             if (!entry->v)
623 	        continue;
624 
625             if (entry->vpn == vpn
626                 && (!use_asid || entry->asid == asid || entry->sh)) {
627 	        if (utlb_match_entry) {
628                     CPUState *cs = env_cpu(s);
629 
630 		    /* Multiple TLB Exception */
631                     cs->exception_index = 0x140;
632 		    s->tea = addr;
633 		    break;
634 	        }
635 		if (entry->v && !v)
636 		    needs_tlb_flush = 1;
637 		entry->v = v;
638 		entry->d = d;
639 	        utlb_match_entry = entry;
640 	    }
641 	    increment_urc(s); /* per utlb access */
642 	}
643 
644 	/* search ITLB */
645 	for (i = 0; i < ITLB_SIZE; i++) {
646             tlb_t * entry = &s->itlb[i];
647             if (entry->vpn == vpn
648                 && (!use_asid || entry->asid == asid || entry->sh)) {
649 	        if (entry->v && !v)
650 		    needs_tlb_flush = 1;
651 	        if (utlb_match_entry)
652 		    *entry = *utlb_match_entry;
653 	        else
654 		    entry->v = v;
655 		break;
656 	    }
657 	}
658 
659         if (needs_tlb_flush) {
660             tlb_flush_page(env_cpu(s), vpn << 10);
661         }
662     } else {
663         int index = (addr & 0x00003f00) >> 8;
664         tlb_t * entry = &s->utlb[index];
665 	if (entry->v) {
666             CPUState *cs = env_cpu(s);
667 
668 	    /* Overwriting valid entry in utlb. */
669             target_ulong address = entry->vpn << 10;
670             tlb_flush_page(cs, address);
671 	}
672 	entry->asid = asid;
673 	entry->vpn = vpn;
674 	entry->d = d;
675 	entry->v = v;
676 	increment_urc(s);
677     }
678 }
679 
680 uint32_t cpu_sh4_read_mmaped_utlb_data(CPUSH4State *s,
681                                        hwaddr addr)
682 {
683     int array = (addr & 0x00800000) >> 23;
684     int index = (addr & 0x00003f00) >> 8;
685     tlb_t * entry = &s->utlb[index];
686 
687     increment_urc(s); /* per utlb access */
688 
689     if (array == 0) {
690         /* ITLB Data Array 1 */
691         return (entry->ppn << 10) |
692                (entry->v   <<  8) |
693                (entry->pr  <<  5) |
694                ((entry->sz & 1) <<  6) |
695                ((entry->sz & 2) <<  4) |
696                (entry->c   <<  3) |
697                (entry->d   <<  2) |
698                (entry->sh  <<  1) |
699                (entry->wt);
700     } else {
701         /* ITLB Data Array 2 */
702         return (entry->tc << 1) |
703                (entry->sa);
704     }
705 }
706 
707 void cpu_sh4_write_mmaped_utlb_data(CPUSH4State *s, hwaddr addr,
708                                     uint32_t mem_value)
709 {
710     int array = (addr & 0x00800000) >> 23;
711     int index = (addr & 0x00003f00) >> 8;
712     tlb_t * entry = &s->utlb[index];
713 
714     increment_urc(s); /* per utlb access */
715 
716     if (array == 0) {
717         /* UTLB Data Array 1 */
718         if (entry->v) {
719             /* Overwriting valid entry in utlb. */
720             target_ulong address = entry->vpn << 10;
721             tlb_flush_page(env_cpu(s), address);
722         }
723         entry->ppn = (mem_value & 0x1ffffc00) >> 10;
724         entry->v   = (mem_value & 0x00000100) >> 8;
725         entry->sz  = (mem_value & 0x00000080) >> 6 |
726                      (mem_value & 0x00000010) >> 4;
727         entry->pr  = (mem_value & 0x00000060) >> 5;
728         entry->c   = (mem_value & 0x00000008) >> 3;
729         entry->d   = (mem_value & 0x00000004) >> 2;
730         entry->sh  = (mem_value & 0x00000002) >> 1;
731         entry->wt  = (mem_value & 0x00000001);
732     } else {
733         /* UTLB Data Array 2 */
734         entry->tc = (mem_value & 0x00000008) >> 3;
735         entry->sa = (mem_value & 0x00000007);
736     }
737 }
738 
739 int cpu_sh4_is_cached(CPUSH4State * env, target_ulong addr)
740 {
741     int n;
742     int use_asid = !(env->mmucr & MMUCR_SV) || !(env->sr & (1u << SR_MD));
743 
744     /* check area */
745     if (env->sr & (1u << SR_MD)) {
746         /* For privileged mode, P2 and P4 area is not cacheable. */
747         if ((0xA0000000 <= addr && addr < 0xC0000000) || 0xE0000000 <= addr)
748             return 0;
749     } else {
750         /* For user mode, only U0 area is cacheable. */
751         if (0x80000000 <= addr)
752             return 0;
753     }
754 
755     /*
756      * TODO : Evaluate CCR and check if the cache is on or off.
757      *        Now CCR is not in CPUSH4State, but in SH7750State.
758      *        When you move the ccr into CPUSH4State, the code will be
759      *        as follows.
760      */
761 #if 0
762     /* check if operand cache is enabled or not. */
763     if (!(env->ccr & 1))
764         return 0;
765 #endif
766 
767     /* if MMU is off, no check for TLB. */
768     if (env->mmucr & MMUCR_AT)
769         return 1;
770 
771     /* check TLB */
772     n = find_tlb_entry(env, addr, env->itlb, ITLB_SIZE, use_asid);
773     if (n >= 0)
774         return env->itlb[n].c;
775 
776     n = find_tlb_entry(env, addr, env->utlb, UTLB_SIZE, use_asid);
777     if (n >= 0)
778         return env->utlb[n].c;
779 
780     return 0;
781 }
782 
783 #endif
784 
785 bool superh_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
786 {
787     if (interrupt_request & CPU_INTERRUPT_HARD) {
788         SuperHCPU *cpu = SUPERH_CPU(cs);
789         CPUSH4State *env = &cpu->env;
790 
791         /* Delay slots are indivisible, ignore interrupts */
792         if (env->flags & DELAY_SLOT_MASK) {
793             return false;
794         } else {
795             superh_cpu_do_interrupt(cs);
796             return true;
797         }
798     }
799     return false;
800 }
801 
802 bool superh_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
803                          MMUAccessType access_type, int mmu_idx,
804                          bool probe, uintptr_t retaddr)
805 {
806     SuperHCPU *cpu = SUPERH_CPU(cs);
807     CPUSH4State *env = &cpu->env;
808     int ret;
809 
810 #ifdef CONFIG_USER_ONLY
811     ret = (access_type == MMU_DATA_STORE ? MMU_DTLB_VIOLATION_WRITE :
812            access_type == MMU_INST_FETCH ? MMU_ITLB_VIOLATION :
813            MMU_DTLB_VIOLATION_READ);
814 #else
815     target_ulong physical;
816     int prot, sh_access_type;
817 
818     sh_access_type = ACCESS_INT;
819     ret = get_physical_address(env, &physical, &prot, address,
820                                access_type, sh_access_type);
821 
822     if (ret == MMU_OK) {
823         address &= TARGET_PAGE_MASK;
824         physical &= TARGET_PAGE_MASK;
825         tlb_set_page(cs, address, physical, prot, mmu_idx, TARGET_PAGE_SIZE);
826         return true;
827     }
828     if (probe) {
829         return false;
830     }
831 
832     if (ret != MMU_DTLB_MULTIPLE && ret != MMU_ITLB_MULTIPLE) {
833         env->pteh = (env->pteh & PTEH_ASID_MASK) | (address & PTEH_VPN_MASK);
834     }
835 #endif
836 
837     env->tea = address;
838     switch (ret) {
839     case MMU_ITLB_MISS:
840     case MMU_DTLB_MISS_READ:
841         cs->exception_index = 0x040;
842         break;
843     case MMU_DTLB_MULTIPLE:
844     case MMU_ITLB_MULTIPLE:
845         cs->exception_index = 0x140;
846         break;
847     case MMU_ITLB_VIOLATION:
848         cs->exception_index = 0x0a0;
849         break;
850     case MMU_DTLB_MISS_WRITE:
851         cs->exception_index = 0x060;
852         break;
853     case MMU_DTLB_INITIAL_WRITE:
854         cs->exception_index = 0x080;
855         break;
856     case MMU_DTLB_VIOLATION_READ:
857         cs->exception_index = 0x0a0;
858         break;
859     case MMU_DTLB_VIOLATION_WRITE:
860         cs->exception_index = 0x0c0;
861         break;
862     case MMU_IADDR_ERROR:
863     case MMU_DADDR_ERROR_READ:
864         cs->exception_index = 0x0e0;
865         break;
866     case MMU_DADDR_ERROR_WRITE:
867         cs->exception_index = 0x100;
868         break;
869     default:
870         cpu_abort(cs, "Unhandled MMU fault");
871     }
872     cpu_loop_exit_restore(cs, retaddr);
873 }
874