xref: /xv6-public/vm.c (revision 03b30863)
1 #include "param.h"
2 #include "types.h"
3 #include "defs.h"
4 #include "x86.h"
5 #include "memlayout.h"
6 #include "mmu.h"
7 #include "proc.h"
8 #include "elf.h"
9 
10 extern char data[];  // defined by kernel.ld
11 pde_t *kpgdir;  // for use in scheduler()
12 
13 // Set up CPU's kernel segment descriptors.
14 // Run once on entry on each CPU.
15 void
16 seginit(void)
17 {
18   struct cpu *c;
19 
20   // Map "logical" addresses to virtual addresses using identity map.
21   // Cannot share a CODE descriptor for both kernel and user
22   // because it would have to have DPL_USR, but the CPU forbids
23   // an interrupt from CPL=0 to DPL=3.
24   c = &cpus[cpunum()];
25   c->gdt[SEG_KCODE] = SEG(STA_X|STA_R, 0, 0xffffffff, 0);
26   c->gdt[SEG_KDATA] = SEG(STA_W, 0, 0xffffffff, 0);
27   c->gdt[SEG_UCODE] = SEG(STA_X|STA_R, 0, 0xffffffff, DPL_USER);
28   c->gdt[SEG_UDATA] = SEG(STA_W, 0, 0xffffffff, DPL_USER);
29 
30   // Map cpu and proc -- these are private per cpu.
31   c->gdt[SEG_KCPU] = SEG(STA_W, &c->cpu, 8, 0);
32 
33   lgdt(c->gdt, sizeof(c->gdt));
34   loadgs(SEG_KCPU << 3);
35 
36   // Initialize cpu-local storage.
37   cpu = c;
38   proc = 0;
39 }
40 
41 // Return the address of the PTE in page table pgdir
42 // that corresponds to virtual address va.  If alloc!=0,
43 // create any required page table pages.
44 static pte_t *
45 walkpgdir(pde_t *pgdir, const void *va, int alloc)
46 {
47   pde_t *pde;
48   pte_t *pgtab;
49 
50   pde = &pgdir[PDX(va)];
51   if(*pde & PTE_P){
52     pgtab = (pte_t*)P2V(PTE_ADDR(*pde));
53   } else {
54     if(!alloc || (pgtab = (pte_t*)kalloc()) == 0)
55       return 0;
56     // Make sure all those PTE_P bits are zero.
57     memset(pgtab, 0, PGSIZE);
58     // The permissions here are overly generous, but they can
59     // be further restricted by the permissions in the page table
60     // entries, if necessary.
61     *pde = V2P(pgtab) | PTE_P | PTE_W | PTE_U;
62   }
63   return &pgtab[PTX(va)];
64 }
65 
66 // Create PTEs for virtual addresses starting at va that refer to
67 // physical addresses starting at pa. va and size might not
68 // be page-aligned.
69 static int
70 mappages(pde_t *pgdir, void *va, uint size, uint pa, int perm)
71 {
72   char *a, *last;
73   pte_t *pte;
74 
75   a = (char*)PGROUNDDOWN((uint)va);
76   last = (char*)PGROUNDDOWN(((uint)va) + size - 1);
77   for(;;){
78     if((pte = walkpgdir(pgdir, a, 1)) == 0)
79       return -1;
80     if(*pte & PTE_P)
81       panic("remap");
82     *pte = pa | perm | PTE_P;
83     if(a == last)
84       break;
85     a += PGSIZE;
86     pa += PGSIZE;
87   }
88   return 0;
89 }
90 
91 // There is one page table per process, plus one that's used when
92 // a CPU is not running any process (kpgdir). The kernel uses the
93 // current process's page table during system calls and interrupts;
94 // page protection bits prevent user code from using the kernel's
95 // mappings.
96 //
97 // setupkvm() and exec() set up every page table like this:
98 //
99 //   0..KERNBASE: user memory (text+data+stack+heap), mapped to
100 //                phys memory allocated by the kernel
101 //   KERNBASE..KERNBASE+EXTMEM: mapped to 0..EXTMEM (for I/O space)
102 //   KERNBASE+EXTMEM..data: mapped to EXTMEM..V2P(data)
103 //                for the kernel's instructions and r/o data
104 //   data..KERNBASE+PHYSTOP: mapped to V2P(data)..PHYSTOP,
105 //                                  rw data + free physical memory
106 //   0xfe000000..0: mapped direct (devices such as ioapic)
107 //
108 // The kernel allocates physical memory for its heap and for user memory
109 // between V2P(end) and the end of physical memory (PHYSTOP)
110 // (directly addressable from end..P2V(PHYSTOP)).
111 
112 // This table defines the kernel's mappings, which are present in
113 // every process's page table.
114 static struct kmap {
115   void *virt;
116   uint phys_start;
117   uint phys_end;
118   int perm;
119 } kmap[] = {
120  { (void*)KERNBASE, 0,             EXTMEM,    PTE_W}, // I/O space
121  { (void*)KERNLINK, V2P(KERNLINK), V2P(data), 0},     // kern text+rodata
122  { (void*)data,     V2P(data),     PHYSTOP,   PTE_W}, // kern data+memory
123  { (void*)DEVSPACE, DEVSPACE,      0,         PTE_W}, // more devices
124 };
125 
126 // Set up kernel part of a page table.
127 pde_t*
128 setupkvm(void)
129 {
130   pde_t *pgdir;
131   struct kmap *k;
132 
133   if((pgdir = (pde_t*)kalloc()) == 0)
134     return 0;
135   memset(pgdir, 0, PGSIZE);
136   if (P2V(PHYSTOP) > (void*)DEVSPACE)
137     panic("PHYSTOP too high");
138   for(k = kmap; k < &kmap[NELEM(kmap)]; k++)
139     if(mappages(pgdir, k->virt, k->phys_end - k->phys_start,
140                 (uint)k->phys_start, k->perm) < 0) {
141       freevm(pgdir);
142       return 0;
143     }
144   return pgdir;
145 }
146 
147 // Allocate one page table for the machine for the kernel address
148 // space for scheduler processes.
149 void
150 kvmalloc(void)
151 {
152   kpgdir = setupkvm();
153   switchkvm();
154 }
155 
156 // Switch h/w page table register to the kernel-only page table,
157 // for when no process is running.
158 void
159 switchkvm(void)
160 {
161   lcr3(V2P(kpgdir));   // switch to the kernel page table
162 }
163 
164 // Switch TSS and h/w page table to correspond to process p.
165 void
166 switchuvm(struct proc *p)
167 {
168   if(p == 0)
169     panic("switchuvm: no process");
170   if(p->kstack == 0)
171     panic("switchuvm: no kstack");
172   if(p->pgdir == 0)
173     panic("switchuvm: no pgdir");
174 
175   pushcli();
176   cpu->gdt[SEG_TSS] = SEG16(STS_T32A, &cpu->ts, sizeof(cpu->ts)-1, 0);
177   cpu->gdt[SEG_TSS].s = 0;
178   cpu->ts.ss0 = SEG_KDATA << 3;
179   cpu->ts.esp0 = (uint)p->kstack + KSTACKSIZE;
180   // setting IOPL=0 in eflags *and* iomb beyond the tss segment limit
181   // forbids I/O instructions (e.g., inb and outb) from user space
182   cpu->ts.iomb = (ushort) 0xFFFF;
183   ltr(SEG_TSS << 3);
184   lcr3(V2P(p->pgdir));  // switch to process's address space
185   popcli();
186 }
187 
188 // Load the initcode into address 0 of pgdir.
189 // sz must be less than a page.
190 void
191 inituvm(pde_t *pgdir, char *init, uint sz)
192 {
193   char *mem;
194 
195   if(sz >= PGSIZE)
196     panic("inituvm: more than a page");
197   mem = kalloc();
198   memset(mem, 0, PGSIZE);
199   mappages(pgdir, 0, PGSIZE, V2P(mem), PTE_W|PTE_U);
200   memmove(mem, init, sz);
201 }
202 
203 // Load a program segment into pgdir.  addr must be page-aligned
204 // and the pages from addr to addr+sz must already be mapped.
205 int
206 loaduvm(pde_t *pgdir, char *addr, struct inode *ip, uint offset, uint sz)
207 {
208   uint i, pa, n;
209   pte_t *pte;
210 
211   if((uint) addr % PGSIZE != 0)
212     panic("loaduvm: addr must be page aligned");
213   for(i = 0; i < sz; i += PGSIZE){
214     if((pte = walkpgdir(pgdir, addr+i, 0)) == 0)
215       panic("loaduvm: address should exist");
216     pa = PTE_ADDR(*pte);
217     if(sz - i < PGSIZE)
218       n = sz - i;
219     else
220       n = PGSIZE;
221     if(readi(ip, P2V(pa), offset+i, n) != n)
222       return -1;
223   }
224   return 0;
225 }
226 
227 // Allocate page tables and physical memory to grow process from oldsz to
228 // newsz, which need not be page aligned.  Returns new size or 0 on error.
229 int
230 allocuvm(pde_t *pgdir, uint oldsz, uint newsz)
231 {
232   char *mem;
233   uint a;
234 
235   if(newsz >= KERNBASE)
236     return 0;
237   if(newsz < oldsz)
238     return oldsz;
239 
240   a = PGROUNDUP(oldsz);
241   for(; a < newsz; a += PGSIZE){
242     mem = kalloc();
243     if(mem == 0){
244       cprintf("allocuvm out of memory\n");
245       deallocuvm(pgdir, newsz, oldsz);
246       return 0;
247     }
248     memset(mem, 0, PGSIZE);
249     if(mappages(pgdir, (char*)a, PGSIZE, V2P(mem), PTE_W|PTE_U) < 0){
250       cprintf("allocuvm out of memory (2)\n");
251       deallocuvm(pgdir, newsz, oldsz);
252       kfree(mem);
253       return 0;
254     }
255   }
256   return newsz;
257 }
258 
259 // Deallocate user pages to bring the process size from oldsz to
260 // newsz.  oldsz and newsz need not be page-aligned, nor does newsz
261 // need to be less than oldsz.  oldsz can be larger than the actual
262 // process size.  Returns the new process size.
263 int
264 deallocuvm(pde_t *pgdir, uint oldsz, uint newsz)
265 {
266   pte_t *pte;
267   uint a, pa;
268 
269   if(newsz >= oldsz)
270     return oldsz;
271 
272   a = PGROUNDUP(newsz);
273   for(; a  < oldsz; a += PGSIZE){
274     pte = walkpgdir(pgdir, (char*)a, 0);
275     if(!pte)
276       a = PGADDR(PDX(a) + 1, 0, 0) - PGSIZE;
277     else if((*pte & PTE_P) != 0){
278       pa = PTE_ADDR(*pte);
279       if(pa == 0)
280         panic("kfree");
281       char *v = P2V(pa);
282       kfree(v);
283       *pte = 0;
284     }
285   }
286   return newsz;
287 }
288 
289 // Free a page table and all the physical memory pages
290 // in the user part.
291 void
292 freevm(pde_t *pgdir)
293 {
294   uint i;
295 
296   if(pgdir == 0)
297     panic("freevm: no pgdir");
298   deallocuvm(pgdir, KERNBASE, 0);
299   for(i = 0; i < NPDENTRIES; i++){
300     if(pgdir[i] & PTE_P){
301       char * v = P2V(PTE_ADDR(pgdir[i]));
302       kfree(v);
303     }
304   }
305   kfree((char*)pgdir);
306 }
307 
308 // Clear PTE_U on a page. Used to create an inaccessible
309 // page beneath the user stack.
310 void
311 clearpteu(pde_t *pgdir, char *uva)
312 {
313   pte_t *pte;
314 
315   pte = walkpgdir(pgdir, uva, 0);
316   if(pte == 0)
317     panic("clearpteu");
318   *pte &= ~PTE_U;
319 }
320 
321 // Given a parent process's page table, create a copy
322 // of it for a child.
323 pde_t*
324 copyuvm(pde_t *pgdir, uint sz)
325 {
326   pde_t *d;
327   pte_t *pte;
328   uint pa, i, flags;
329   char *mem;
330 
331   if((d = setupkvm()) == 0)
332     return 0;
333   for(i = 0; i < sz; i += PGSIZE){
334     if((pte = walkpgdir(pgdir, (void *) i, 0)) == 0)
335       panic("copyuvm: pte should exist");
336     if(!(*pte & PTE_P))
337       panic("copyuvm: page not present");
338     pa = PTE_ADDR(*pte);
339     flags = PTE_FLAGS(*pte);
340     if((mem = kalloc()) == 0)
341       goto bad;
342     memmove(mem, (char*)P2V(pa), PGSIZE);
343     if(mappages(d, (void*)i, PGSIZE, V2P(mem), flags) < 0)
344       goto bad;
345   }
346   return d;
347 
348 bad:
349   freevm(d);
350   return 0;
351 }
352 
353 //PAGEBREAK!
354 // Map user virtual address to kernel address.
355 char*
356 uva2ka(pde_t *pgdir, char *uva)
357 {
358   pte_t *pte;
359 
360   pte = walkpgdir(pgdir, uva, 0);
361   if((*pte & PTE_P) == 0)
362     return 0;
363   if((*pte & PTE_U) == 0)
364     return 0;
365   return (char*)P2V(PTE_ADDR(*pte));
366 }
367 
368 // Copy len bytes from p to user address va in page table pgdir.
369 // Most useful when pgdir is not the current page table.
370 // uva2ka ensures this only works for PTE_U pages.
371 int
372 copyout(pde_t *pgdir, uint va, void *p, uint len)
373 {
374   char *buf, *pa0;
375   uint n, va0;
376 
377   buf = (char*)p;
378   while(len > 0){
379     va0 = (uint)PGROUNDDOWN(va);
380     pa0 = uva2ka(pgdir, (char*)va0);
381     if(pa0 == 0)
382       return -1;
383     n = PGSIZE - (va - va0);
384     if(n > len)
385       n = len;
386     memmove(pa0 + (va - va0), buf, n);
387     len -= n;
388     buf += n;
389     va = va0 + PGSIZE;
390   }
391   return 0;
392 }
393 
394 //PAGEBREAK!
395 // Blank page.
396 //PAGEBREAK!
397 // Blank page.
398 //PAGEBREAK!
399 // Blank page.
400 
401