xref: /xv6-public/vm.c (revision 0a4a4230)
1 #include "param.h"
2 #include "types.h"
3 #include "defs.h"
4 #include "x86.h"
5 #include "memlayout.h"
6 #include "mmu.h"
7 #include "proc.h"
8 #include "elf.h"
9 
10 extern char data[];  // defined by kernel.ld
11 pde_t *kpgdir;  // for use in scheduler()
12 struct segdesc gdt[NSEGS];
13 
14 // Set up CPU's kernel segment descriptors.
15 // Run once on entry on each CPU.
16 void
17 seginit(void)
18 {
19   struct cpu *c;
20 
21   // Map "logical" addresses to virtual addresses using identity map.
22   // Cannot share a CODE descriptor for both kernel and user
23   // because it would have to have DPL_USR, but the CPU forbids
24   // an interrupt from CPL=0 to DPL=3.
25   c = &cpus[cpunum()];
26   c->gdt[SEG_KCODE] = SEG(STA_X|STA_R, 0, 0xffffffff, 0);
27   c->gdt[SEG_KDATA] = SEG(STA_W, 0, 0xffffffff, 0);
28   c->gdt[SEG_UCODE] = SEG(STA_X|STA_R, 0, 0xffffffff, DPL_USER);
29   c->gdt[SEG_UDATA] = SEG(STA_W, 0, 0xffffffff, DPL_USER);
30 
31   // Map cpu, and curproc
32   c->gdt[SEG_KCPU] = SEG(STA_W, &c->cpu, 8, 0);
33 
34   lgdt(c->gdt, sizeof(c->gdt));
35   loadgs(SEG_KCPU << 3);
36 
37   // Initialize cpu-local storage.
38   cpu = c;
39   proc = 0;
40 }
41 
42 // Return the address of the PTE in page table pgdir
43 // that corresponds to virtual address va.  If alloc!=0,
44 // create any required page table pages.
45 static pte_t *
46 walkpgdir(pde_t *pgdir, const void *va, int alloc)
47 {
48   pde_t *pde;
49   pte_t *pgtab;
50 
51   pde = &pgdir[PDX(va)];
52   if(*pde & PTE_P){
53     pgtab = (pte_t*)p2v(PTE_ADDR(*pde));
54   } else {
55     if(!alloc || (pgtab = (pte_t*)kalloc()) == 0)
56       return 0;
57     // Make sure all those PTE_P bits are zero.
58     memset(pgtab, 0, PGSIZE);
59     // The permissions here are overly generous, but they can
60     // be further restricted by the permissions in the page table
61     // entries, if necessary.
62     *pde = v2p(pgtab) | PTE_P | PTE_W | PTE_U;
63   }
64   return &pgtab[PTX(va)];
65 }
66 
67 // Create PTEs for virtual addresses starting at va that refer to
68 // physical addresses starting at pa. va and size might not
69 // be page-aligned.
70 static int
71 mappages(pde_t *pgdir, void *va, uint size, uint pa, int perm)
72 {
73   char *a, *last;
74   pte_t *pte;
75 
76   a = (char*)PGROUNDDOWN((uint)va);
77   last = (char*)PGROUNDDOWN(((uint)va) + size - 1);
78   for(;;){
79     if((pte = walkpgdir(pgdir, a, 1)) == 0)
80       return -1;
81     if(*pte & PTE_P)
82       panic("remap");
83     *pte = pa | perm | PTE_P;
84     if(a == last)
85       break;
86     a += PGSIZE;
87     pa += PGSIZE;
88   }
89   return 0;
90 }
91 
92 // There is one page table per process, plus one that's used when
93 // a CPU is not running any process (kpgdir). The kernel uses the
94 // current process's page table during system calls and interrupts;
95 // page protection bits prevent user code from using the kernel's
96 // mappings.
97 //
98 // setupkvm() and exec() set up every page table like this:
99 //
100 //   0..KERNBASE: user memory (text+data+stack+heap), mapped to
101 //                phys memory allocated by the kernel
102 //   KERNBASE..KERNBASE+EXTMEM: mapped to 0..EXTMEM (for I/O space)
103 //   KERNBASE+EXTMEM..data: mapped to EXTMEM..V2P(data)
104 //                for the kernel's instructions and r/o data
105 //   data..KERNBASE+PHYSTOP: mapped to V2P(data)..PHYSTOP,
106 //                                  rw data + free physical memory
107 //   0xfe000000..0: mapped direct (devices such as ioapic)
108 //
109 // The kernel allocates physical memory for its heap and for user memory
110 // between V2P(end) and the end of physical memory (PHYSTOP)
111 // (directly addressable from end..P2V(PHYSTOP)).
112 
113 // This table defines the kernel's mappings, which are present in
114 // every process's page table.
115 static struct kmap {
116   void *virt;
117   uint phys_start;
118   uint phys_end;
119   int perm;
120 } kmap[] = {
121  { (void*)KERNBASE, 0,             EXTMEM,    PTE_W}, // I/O space
122  { (void*)KERNLINK, V2P(KERNLINK), V2P(data), 0},     // kern text+rodata
123  { (void*)data,     V2P(data),     PHYSTOP,   PTE_W}, // kern data+memory
124  { (void*)DEVSPACE, DEVSPACE,      0,         PTE_W}, // more devices
125 };
126 
127 // Set up kernel part of a page table.
128 pde_t*
129 setupkvm(void)
130 {
131   pde_t *pgdir;
132   struct kmap *k;
133 
134   if((pgdir = (pde_t*)kalloc()) == 0)
135     return 0;
136   memset(pgdir, 0, PGSIZE);
137   if (p2v(PHYSTOP) > (void*)DEVSPACE)
138     panic("PHYSTOP too high");
139   for(k = kmap; k < &kmap[NELEM(kmap)]; k++)
140     if(mappages(pgdir, k->virt, k->phys_end - k->phys_start,
141                 (uint)k->phys_start, k->perm) < 0)
142       return 0;
143   return pgdir;
144 }
145 
146 // Allocate one page table for the machine for the kernel address
147 // space for scheduler processes.
148 void
149 kvmalloc(void)
150 {
151   kpgdir = setupkvm();
152   switchkvm();
153 }
154 
155 // Switch h/w page table register to the kernel-only page table,
156 // for when no process is running.
157 void
158 switchkvm(void)
159 {
160   lcr3(v2p(kpgdir));   // switch to the kernel page table
161 }
162 
163 // Switch TSS and h/w page table to correspond to process p.
164 void
165 switchuvm(struct proc *p)
166 {
167   pushcli();
168   cpu->gdt[SEG_TSS] = SEG16(STS_T32A, &cpu->ts, sizeof(cpu->ts)-1, 0);
169   cpu->gdt[SEG_TSS].s = 0;
170   cpu->ts.ss0 = SEG_KDATA << 3;
171   cpu->ts.esp0 = (uint)proc->kstack + KSTACKSIZE;
172   ltr(SEG_TSS << 3);
173   if(p->pgdir == 0)
174     panic("switchuvm: no pgdir");
175   lcr3(v2p(p->pgdir));  // switch to new address space
176   popcli();
177 }
178 
179 // Load the initcode into address 0 of pgdir.
180 // sz must be less than a page.
181 void
182 inituvm(pde_t *pgdir, char *init, uint sz)
183 {
184   char *mem;
185 
186   if(sz >= PGSIZE)
187     panic("inituvm: more than a page");
188   mem = kalloc();
189   memset(mem, 0, PGSIZE);
190   mappages(pgdir, 0, PGSIZE, v2p(mem), PTE_W|PTE_U);
191   memmove(mem, init, sz);
192 }
193 
194 // Load a program segment into pgdir.  addr must be page-aligned
195 // and the pages from addr to addr+sz must already be mapped.
196 int
197 loaduvm(pde_t *pgdir, char *addr, struct inode *ip, uint offset, uint sz)
198 {
199   uint i, pa, n;
200   pte_t *pte;
201 
202   if((uint) addr % PGSIZE != 0)
203     panic("loaduvm: addr must be page aligned");
204   for(i = 0; i < sz; i += PGSIZE){
205     if((pte = walkpgdir(pgdir, addr+i, 0)) == 0)
206       panic("loaduvm: address should exist");
207     pa = PTE_ADDR(*pte);
208     if(sz - i < PGSIZE)
209       n = sz - i;
210     else
211       n = PGSIZE;
212     if(readi(ip, p2v(pa), offset+i, n) != n)
213       return -1;
214   }
215   return 0;
216 }
217 
218 // Allocate page tables and physical memory to grow process from oldsz to
219 // newsz, which need not be page aligned.  Returns new size or 0 on error.
220 int
221 allocuvm(pde_t *pgdir, uint oldsz, uint newsz)
222 {
223   char *mem;
224   uint a;
225 
226   if(newsz >= KERNBASE)
227     return 0;
228   if(newsz < oldsz)
229     return oldsz;
230 
231   a = PGROUNDUP(oldsz);
232   for(; a < newsz; a += PGSIZE){
233     mem = kalloc();
234     if(mem == 0){
235       cprintf("allocuvm out of memory\n");
236       deallocuvm(pgdir, newsz, oldsz);
237       return 0;
238     }
239     memset(mem, 0, PGSIZE);
240     if(mappages(pgdir, (char*)a, PGSIZE, v2p(mem), PTE_W|PTE_U) < 0){
241       cprintf("allocuvm out of memory (2)\n");
242       deallocuvm(pgdir, newsz, oldsz);
243       kfree(mem);
244       return 0;
245     }
246   }
247   return newsz;
248 }
249 
250 // Deallocate user pages to bring the process size from oldsz to
251 // newsz.  oldsz and newsz need not be page-aligned, nor does newsz
252 // need to be less than oldsz.  oldsz can be larger than the actual
253 // process size.  Returns the new process size.
254 int
255 deallocuvm(pde_t *pgdir, uint oldsz, uint newsz)
256 {
257   pte_t *pte;
258   uint a, pa;
259 
260   if(newsz >= oldsz)
261     return oldsz;
262 
263   a = PGROUNDUP(newsz);
264   for(; a  < oldsz; a += PGSIZE){
265     pte = walkpgdir(pgdir, (char*)a, 0);
266     if(!pte)
267       a += (NPTENTRIES - 1) * PGSIZE;
268     else if((*pte & PTE_P) != 0){
269       pa = PTE_ADDR(*pte);
270       if(pa == 0)
271         panic("kfree");
272       char *v = p2v(pa);
273       kfree(v);
274       *pte = 0;
275     }
276   }
277   return newsz;
278 }
279 
280 // Free a page table and all the physical memory pages
281 // in the user part.
282 void
283 freevm(pde_t *pgdir)
284 {
285   uint i;
286 
287   if(pgdir == 0)
288     panic("freevm: no pgdir");
289   deallocuvm(pgdir, KERNBASE, 0);
290   for(i = 0; i < NPDENTRIES; i++){
291     if(pgdir[i] & PTE_P){
292       char * v = p2v(PTE_ADDR(pgdir[i]));
293       kfree(v);
294     }
295   }
296   kfree((char*)pgdir);
297 }
298 
299 // Clear PTE_U on a page. Used to create an inaccessible
300 // page beneath the user stack.
301 void
302 clearpteu(pde_t *pgdir, char *uva)
303 {
304   pte_t *pte;
305 
306   pte = walkpgdir(pgdir, uva, 0);
307   if(pte == 0)
308     panic("clearpteu");
309   *pte &= ~PTE_U;
310 }
311 
312 // Given a parent process's page table, create a copy
313 // of it for a child.
314 pde_t*
315 copyuvm(pde_t *pgdir, uint sz)
316 {
317   pde_t *d;
318   pte_t *pte;
319   uint pa, i, flags;
320   char *mem;
321 
322   if((d = setupkvm()) == 0)
323     return 0;
324   for(i = 0; i < sz; i += PGSIZE){
325     if((pte = walkpgdir(pgdir, (void *) i, 0)) == 0)
326       panic("copyuvm: pte should exist");
327     if(!(*pte & PTE_P))
328       panic("copyuvm: page not present");
329     pa = PTE_ADDR(*pte);
330     flags = PTE_FLAGS(*pte);
331     if((mem = kalloc()) == 0)
332       goto bad;
333     memmove(mem, (char*)p2v(pa), PGSIZE);
334     if(mappages(d, (void*)i, PGSIZE, v2p(mem), flags) < 0)
335       goto bad;
336   }
337   return d;
338 
339 bad:
340   freevm(d);
341   return 0;
342 }
343 
344 //PAGEBREAK!
345 // Map user virtual address to kernel address.
346 char*
347 uva2ka(pde_t *pgdir, char *uva)
348 {
349   pte_t *pte;
350 
351   pte = walkpgdir(pgdir, uva, 0);
352   if((*pte & PTE_P) == 0)
353     return 0;
354   if((*pte & PTE_U) == 0)
355     return 0;
356   return (char*)p2v(PTE_ADDR(*pte));
357 }
358 
359 // Copy len bytes from p to user address va in page table pgdir.
360 // Most useful when pgdir is not the current page table.
361 // uva2ka ensures this only works for PTE_U pages.
362 int
363 copyout(pde_t *pgdir, uint va, void *p, uint len)
364 {
365   char *buf, *pa0;
366   uint n, va0;
367 
368   buf = (char*)p;
369   while(len > 0){
370     va0 = (uint)PGROUNDDOWN(va);
371     pa0 = uva2ka(pgdir, (char*)va0);
372     if(pa0 == 0)
373       return -1;
374     n = PGSIZE - (va - va0);
375     if(n > len)
376       n = len;
377     memmove(pa0 + (va - va0), buf, n);
378     len -= n;
379     buf += n;
380     va = va0 + PGSIZE;
381   }
382   return 0;
383 }
384 
385 //PAGEBREAK!
386 // Blank page.
387 //PAGEBREAK!
388 // Blank page.
389 //PAGEBREAK!
390 // Blank page.
391 
392