xref: /xv6-public/vm.c (revision 37939f24)
1 #include "param.h"
2 #include "types.h"
3 #include "defs.h"
4 #include "x86.h"
5 #include "memlayout.h"
6 #include "mmu.h"
7 #include "proc.h"
8 #include "elf.h"
9 
10 extern char data[];  // defined by kernel.ld
11 pde_t *kpgdir;  // for use in scheduler()
12 
13 // Set up CPU's kernel segment descriptors.
14 // Run once on entry on each CPU.
15 void
16 seginit(void)
17 {
18   struct cpu *c;
19 
20   // Map "logical" addresses to virtual addresses using identity map.
21   // Cannot share a CODE descriptor for both kernel and user
22   // because it would have to have DPL_USR, but the CPU forbids
23   // an interrupt from CPL=0 to DPL=3.
24   c = &cpus[cpunum()];
25   c->gdt[SEG_KCODE] = SEG(STA_X|STA_R, 0, 0xffffffff, 0);
26   c->gdt[SEG_KDATA] = SEG(STA_W, 0, 0xffffffff, 0);
27   c->gdt[SEG_UCODE] = SEG(STA_X|STA_R, 0, 0xffffffff, DPL_USER);
28   c->gdt[SEG_UDATA] = SEG(STA_W, 0, 0xffffffff, DPL_USER);
29 
30   // Map cpu and curproc -- these are private per cpu.
31   c->gdt[SEG_KCPU] = SEG(STA_W, &c->cpu, 8, 0);
32 
33   lgdt(c->gdt, sizeof(c->gdt));
34   loadgs(SEG_KCPU << 3);
35 
36   // Initialize cpu-local storage.
37   cpu = c;
38   proc = 0;
39 }
40 
41 // Return the address of the PTE in page table pgdir
42 // that corresponds to virtual address va.  If alloc!=0,
43 // create any required page table pages.
44 static pte_t *
45 walkpgdir(pde_t *pgdir, const void *va, int alloc)
46 {
47   pde_t *pde;
48   pte_t *pgtab;
49 
50   pde = &pgdir[PDX(va)];
51   if(*pde & PTE_P){
52     pgtab = (pte_t*)P2V(PTE_ADDR(*pde));
53   } else {
54     if(!alloc || (pgtab = (pte_t*)kalloc()) == 0)
55       return 0;
56     // Make sure all those PTE_P bits are zero.
57     memset(pgtab, 0, PGSIZE);
58     // The permissions here are overly generous, but they can
59     // be further restricted by the permissions in the page table
60     // entries, if necessary.
61     *pde = V2P(pgtab) | PTE_P | PTE_W | PTE_U;
62   }
63   return &pgtab[PTX(va)];
64 }
65 
66 // Create PTEs for virtual addresses starting at va that refer to
67 // physical addresses starting at pa. va and size might not
68 // be page-aligned.
69 static int
70 mappages(pde_t *pgdir, void *va, uint size, uint pa, int perm)
71 {
72   char *a, *last;
73   pte_t *pte;
74 
75   a = (char*)PGROUNDDOWN((uint)va);
76   last = (char*)PGROUNDDOWN(((uint)va) + size - 1);
77   for(;;){
78     if((pte = walkpgdir(pgdir, a, 1)) == 0)
79       return -1;
80     if(*pte & PTE_P)
81       panic("remap");
82     *pte = pa | perm | PTE_P;
83     if(a == last)
84       break;
85     a += PGSIZE;
86     pa += PGSIZE;
87   }
88   return 0;
89 }
90 
91 // There is one page table per process, plus one that's used when
92 // a CPU is not running any process (kpgdir). The kernel uses the
93 // current process's page table during system calls and interrupts;
94 // page protection bits prevent user code from using the kernel's
95 // mappings.
96 //
97 // setupkvm() and exec() set up every page table like this:
98 //
99 //   0..KERNBASE: user memory (text+data+stack+heap), mapped to
100 //                phys memory allocated by the kernel
101 //   KERNBASE..KERNBASE+EXTMEM: mapped to 0..EXTMEM (for I/O space)
102 //   KERNBASE+EXTMEM..data: mapped to EXTMEM..V2P(data)
103 //                for the kernel's instructions and r/o data
104 //   data..KERNBASE+PHYSTOP: mapped to V2P(data)..PHYSTOP,
105 //                                  rw data + free physical memory
106 //   0xfe000000..0: mapped direct (devices such as ioapic)
107 //
108 // The kernel allocates physical memory for its heap and for user memory
109 // between V2P(end) and the end of physical memory (PHYSTOP)
110 // (directly addressable from end..P2V(PHYSTOP)).
111 
112 // This table defines the kernel's mappings, which are present in
113 // every process's page table.
114 static struct kmap {
115   void *virt;
116   uint phys_start;
117   uint phys_end;
118   int perm;
119 } kmap[] = {
120  { (void*)KERNBASE, 0,             EXTMEM,    PTE_W}, // I/O space
121  { (void*)KERNLINK, V2P(KERNLINK), V2P(data), 0},     // kern text+rodata
122  { (void*)data,     V2P(data),     PHYSTOP,   PTE_W}, // kern data+memory
123  { (void*)DEVSPACE, DEVSPACE,      0,         PTE_W}, // more devices
124 };
125 
126 // Set up kernel part of a page table.
127 pde_t*
128 setupkvm(void)
129 {
130   pde_t *pgdir;
131   struct kmap *k;
132 
133   if((pgdir = (pde_t*)kalloc()) == 0)
134     return 0;
135   memset(pgdir, 0, PGSIZE);
136   if (P2V(PHYSTOP) > (void*)DEVSPACE)
137     panic("PHYSTOP too high");
138   for(k = kmap; k < &kmap[NELEM(kmap)]; k++)
139     if(mappages(pgdir, k->virt, k->phys_end - k->phys_start,
140                 (uint)k->phys_start, k->perm) < 0)
141       return 0;
142   return pgdir;
143 }
144 
145 // Allocate one page table for the machine for the kernel address
146 // space for scheduler processes.
147 void
148 kvmalloc(void)
149 {
150   kpgdir = setupkvm();
151   switchkvm();
152 }
153 
154 // Switch h/w page table register to the kernel-only page table,
155 // for when no process is running.
156 void
157 switchkvm(void)
158 {
159   lcr3(V2P(kpgdir));   // switch to the kernel page table
160 }
161 
162 // Switch TSS and h/w page table to correspond to process p.
163 void
164 switchuvm(struct proc *p)
165 {
166   pushcli();
167   cpu->gdt[SEG_TSS] = SEG16(STS_T32A, &cpu->ts, sizeof(cpu->ts)-1, 0);
168   cpu->gdt[SEG_TSS].s = 0;
169   cpu->ts.ss0 = SEG_KDATA << 3;
170   cpu->ts.esp0 = (uint)proc->kstack + KSTACKSIZE;
171   // setting IOPL=0 in eflags *and* iomb beyond the tss segment limit
172   // forbids I/O instructions (e.g., inb and outb) from user space
173   cpu->ts.iomb = (ushort) 0xFFFF;
174   ltr(SEG_TSS << 3);
175   if(p->pgdir == 0)
176     panic("switchuvm: no pgdir");
177   lcr3(V2P(p->pgdir));  // switch to process's address space
178   popcli();
179 }
180 
181 // Load the initcode into address 0 of pgdir.
182 // sz must be less than a page.
183 void
184 inituvm(pde_t *pgdir, char *init, uint sz)
185 {
186   char *mem;
187 
188   if(sz >= PGSIZE)
189     panic("inituvm: more than a page");
190   mem = kalloc();
191   memset(mem, 0, PGSIZE);
192   mappages(pgdir, 0, PGSIZE, V2P(mem), PTE_W|PTE_U);
193   memmove(mem, init, sz);
194 }
195 
196 // Load a program segment into pgdir.  addr must be page-aligned
197 // and the pages from addr to addr+sz must already be mapped.
198 int
199 loaduvm(pde_t *pgdir, char *addr, struct inode *ip, uint offset, uint sz)
200 {
201   uint i, pa, n;
202   pte_t *pte;
203 
204   if((uint) addr % PGSIZE != 0)
205     panic("loaduvm: addr must be page aligned");
206   for(i = 0; i < sz; i += PGSIZE){
207     if((pte = walkpgdir(pgdir, addr+i, 0)) == 0)
208       panic("loaduvm: address should exist");
209     pa = PTE_ADDR(*pte);
210     if(sz - i < PGSIZE)
211       n = sz - i;
212     else
213       n = PGSIZE;
214     if(readi(ip, P2V(pa), offset+i, n) != n)
215       return -1;
216   }
217   return 0;
218 }
219 
220 // Allocate page tables and physical memory to grow process from oldsz to
221 // newsz, which need not be page aligned.  Returns new size or 0 on error.
222 int
223 allocuvm(pde_t *pgdir, uint oldsz, uint newsz)
224 {
225   char *mem;
226   uint a;
227 
228   if(newsz >= KERNBASE)
229     return 0;
230   if(newsz < oldsz)
231     return oldsz;
232 
233   a = PGROUNDUP(oldsz);
234   for(; a < newsz; a += PGSIZE){
235     mem = kalloc();
236     if(mem == 0){
237       cprintf("allocuvm out of memory\n");
238       deallocuvm(pgdir, newsz, oldsz);
239       return 0;
240     }
241     memset(mem, 0, PGSIZE);
242     if(mappages(pgdir, (char*)a, PGSIZE, V2P(mem), PTE_W|PTE_U) < 0){
243       cprintf("allocuvm out of memory (2)\n");
244       deallocuvm(pgdir, newsz, oldsz);
245       kfree(mem);
246       return 0;
247     }
248   }
249   return newsz;
250 }
251 
252 // Deallocate user pages to bring the process size from oldsz to
253 // newsz.  oldsz and newsz need not be page-aligned, nor does newsz
254 // need to be less than oldsz.  oldsz can be larger than the actual
255 // process size.  Returns the new process size.
256 int
257 deallocuvm(pde_t *pgdir, uint oldsz, uint newsz)
258 {
259   pte_t *pte;
260   uint a, pa;
261 
262   if(newsz >= oldsz)
263     return oldsz;
264 
265   a = PGROUNDUP(newsz);
266   for(; a  < oldsz; a += PGSIZE){
267     pte = walkpgdir(pgdir, (char*)a, 0);
268     if(!pte)
269       a += (NPTENTRIES - 1) * PGSIZE;
270     else if((*pte & PTE_P) != 0){
271       pa = PTE_ADDR(*pte);
272       if(pa == 0)
273         panic("kfree");
274       char *v = P2V(pa);
275       kfree(v);
276       *pte = 0;
277     }
278   }
279   return newsz;
280 }
281 
282 // Free a page table and all the physical memory pages
283 // in the user part.
284 void
285 freevm(pde_t *pgdir)
286 {
287   uint i;
288 
289   if(pgdir == 0)
290     panic("freevm: no pgdir");
291   deallocuvm(pgdir, KERNBASE, 0);
292   for(i = 0; i < NPDENTRIES; i++){
293     if(pgdir[i] & PTE_P){
294       char * v = P2V(PTE_ADDR(pgdir[i]));
295       kfree(v);
296     }
297   }
298   kfree((char*)pgdir);
299 }
300 
301 // Clear PTE_U on a page. Used to create an inaccessible
302 // page beneath the user stack.
303 void
304 clearpteu(pde_t *pgdir, char *uva)
305 {
306   pte_t *pte;
307 
308   pte = walkpgdir(pgdir, uva, 0);
309   if(pte == 0)
310     panic("clearpteu");
311   *pte &= ~PTE_U;
312 }
313 
314 // Given a parent process's page table, create a copy
315 // of it for a child.
316 pde_t*
317 copyuvm(pde_t *pgdir, uint sz)
318 {
319   pde_t *d;
320   pte_t *pte;
321   uint pa, i, flags;
322   char *mem;
323 
324   if((d = setupkvm()) == 0)
325     return 0;
326   for(i = 0; i < sz; i += PGSIZE){
327     if((pte = walkpgdir(pgdir, (void *) i, 0)) == 0)
328       panic("copyuvm: pte should exist");
329     if(!(*pte & PTE_P))
330       panic("copyuvm: page not present");
331     pa = PTE_ADDR(*pte);
332     flags = PTE_FLAGS(*pte);
333     if((mem = kalloc()) == 0)
334       goto bad;
335     memmove(mem, (char*)P2V(pa), PGSIZE);
336     if(mappages(d, (void*)i, PGSIZE, V2P(mem), flags) < 0)
337       goto bad;
338   }
339   return d;
340 
341 bad:
342   freevm(d);
343   return 0;
344 }
345 
346 //PAGEBREAK!
347 // Map user virtual address to kernel address.
348 char*
349 uva2ka(pde_t *pgdir, char *uva)
350 {
351   pte_t *pte;
352 
353   pte = walkpgdir(pgdir, uva, 0);
354   if((*pte & PTE_P) == 0)
355     return 0;
356   if((*pte & PTE_U) == 0)
357     return 0;
358   return (char*)P2V(PTE_ADDR(*pte));
359 }
360 
361 // Copy len bytes from p to user address va in page table pgdir.
362 // Most useful when pgdir is not the current page table.
363 // uva2ka ensures this only works for PTE_U pages.
364 int
365 copyout(pde_t *pgdir, uint va, void *p, uint len)
366 {
367   char *buf, *pa0;
368   uint n, va0;
369 
370   buf = (char*)p;
371   while(len > 0){
372     va0 = (uint)PGROUNDDOWN(va);
373     pa0 = uva2ka(pgdir, (char*)va0);
374     if(pa0 == 0)
375       return -1;
376     n = PGSIZE - (va - va0);
377     if(n > len)
378       n = len;
379     memmove(pa0 + (va - va0), buf, n);
380     len -= n;
381     buf += n;
382     va = va0 + PGSIZE;
383   }
384   return 0;
385 }
386 
387 //PAGEBREAK!
388 // Blank page.
389 //PAGEBREAK!
390 // Blank page.
391 //PAGEBREAK!
392 // Blank page.
393 
394