xref: /xv6-public/vm.c (revision 7894fcd2)
1 #include "param.h"
2 #include "types.h"
3 #include "defs.h"
4 #include "x86.h"
5 #include "memlayout.h"
6 #include "mmu.h"
7 #include "proc.h"
8 #include "elf.h"
9 
10 extern char data[];  // defined by kernel.ld
11 pde_t *kpgdir;  // for use in scheduler()
12 
13 // Set up CPU's kernel segment descriptors.
14 // Run once on entry on each CPU.
15 void
16 seginit(void)
17 {
18   struct cpu *c;
19 
20   // Map "logical" addresses to virtual addresses using identity map.
21   // Cannot share a CODE descriptor for both kernel and user
22   // because it would have to have DPL_USR, but the CPU forbids
23   // an interrupt from CPL=0 to DPL=3.
24   c = &cpus[cpunum()];
25   c->gdt[SEG_KCODE] = SEG(STA_X|STA_R, 0, 0xffffffff, 0);
26   c->gdt[SEG_KDATA] = SEG(STA_W, 0, 0xffffffff, 0);
27   c->gdt[SEG_UCODE] = SEG(STA_X|STA_R, 0, 0xffffffff, DPL_USER);
28   c->gdt[SEG_UDATA] = SEG(STA_W, 0, 0xffffffff, DPL_USER);
29 
30   // Map cpu and curproc -- these are private per cpu.
31   c->gdt[SEG_KCPU] = SEG(STA_W, &c->cpu, 8, 0);
32 
33   lgdt(c->gdt, sizeof(c->gdt));
34   loadgs(SEG_KCPU << 3);
35 
36   // Initialize cpu-local storage.
37   cpu = c;
38   proc = 0;
39 }
40 
41 // Return the address of the PTE in page table pgdir
42 // that corresponds to virtual address va.  If alloc!=0,
43 // create any required page table pages.
44 static pte_t *
45 walkpgdir(pde_t *pgdir, const void *va, int alloc)
46 {
47   pde_t *pde;
48   pte_t *pgtab;
49 
50   pde = &pgdir[PDX(va)];
51   if(*pde & PTE_P){
52     pgtab = (pte_t*)P2V(PTE_ADDR(*pde));
53   } else {
54     if(!alloc || (pgtab = (pte_t*)kalloc()) == 0)
55       return 0;
56     // Make sure all those PTE_P bits are zero.
57     memset(pgtab, 0, PGSIZE);
58     // The permissions here are overly generous, but they can
59     // be further restricted by the permissions in the page table
60     // entries, if necessary.
61     *pde = V2P(pgtab) | PTE_P | PTE_W | PTE_U;
62   }
63   return &pgtab[PTX(va)];
64 }
65 
66 // Create PTEs for virtual addresses starting at va that refer to
67 // physical addresses starting at pa. va and size might not
68 // be page-aligned.
69 static int
70 mappages(pde_t *pgdir, void *va, uint size, uint pa, int perm)
71 {
72   char *a, *last;
73   pte_t *pte;
74 
75   a = (char*)PGROUNDDOWN((uint)va);
76   last = (char*)PGROUNDDOWN(((uint)va) + size - 1);
77   for(;;){
78     if((pte = walkpgdir(pgdir, a, 1)) == 0)
79       return -1;
80     if(*pte & PTE_P)
81       panic("remap");
82     *pte = pa | perm | PTE_P;
83     if(a == last)
84       break;
85     a += PGSIZE;
86     pa += PGSIZE;
87   }
88   return 0;
89 }
90 
91 // There is one page table per process, plus one that's used when
92 // a CPU is not running any process (kpgdir). The kernel uses the
93 // current process's page table during system calls and interrupts;
94 // page protection bits prevent user code from using the kernel's
95 // mappings.
96 //
97 // setupkvm() and exec() set up every page table like this:
98 //
99 //   0..KERNBASE: user memory (text+data+stack+heap), mapped to
100 //                phys memory allocated by the kernel
101 //   KERNBASE..KERNBASE+EXTMEM: mapped to 0..EXTMEM (for I/O space)
102 //   KERNBASE+EXTMEM..data: mapped to EXTMEM..V2P(data)
103 //                for the kernel's instructions and r/o data
104 //   data..KERNBASE+PHYSTOP: mapped to V2P(data)..PHYSTOP,
105 //                                  rw data + free physical memory
106 //   0xfe000000..0: mapped direct (devices such as ioapic)
107 //
108 // The kernel allocates physical memory for its heap and for user memory
109 // between V2P(end) and the end of physical memory (PHYSTOP)
110 // (directly addressable from end..P2V(PHYSTOP)).
111 
112 // This table defines the kernel's mappings, which are present in
113 // every process's page table.
114 static struct kmap {
115   void *virt;
116   uint phys_start;
117   uint phys_end;
118   int perm;
119 } kmap[] = {
120  { (void*)KERNBASE, 0,             EXTMEM,    PTE_W}, // I/O space
121  { (void*)KERNLINK, V2P(KERNLINK), V2P(data), 0},     // kern text+rodata
122  { (void*)data,     V2P(data),     PHYSTOP,   PTE_W}, // kern data+memory
123  { (void*)DEVSPACE, DEVSPACE,      0,         PTE_W}, // more devices
124 };
125 
126 // Set up kernel part of a page table.
127 pde_t*
128 setupkvm(void)
129 {
130   pde_t *pgdir;
131   struct kmap *k;
132 
133   if((pgdir = (pde_t*)kalloc()) == 0)
134     return 0;
135   memset(pgdir, 0, PGSIZE);
136   if (P2V(PHYSTOP) > (void*)DEVSPACE)
137     panic("PHYSTOP too high");
138   for(k = kmap; k < &kmap[NELEM(kmap)]; k++)
139     if(mappages(pgdir, k->virt, k->phys_end - k->phys_start,
140                 (uint)k->phys_start, k->perm) < 0)
141       return 0;
142   return pgdir;
143 }
144 
145 // Allocate one page table for the machine for the kernel address
146 // space for scheduler processes.
147 void
148 kvmalloc(void)
149 {
150   kpgdir = setupkvm();
151   switchkvm();
152 }
153 
154 // Switch h/w page table register to the kernel-only page table,
155 // for when no process is running.
156 void
157 switchkvm(void)
158 {
159   lcr3(V2P(kpgdir));   // switch to the kernel page table
160 }
161 
162 // Switch TSS and h/w page table to correspond to process p.
163 void
164 switchuvm(struct proc *p)
165 {
166   pushcli();
167   cpu->gdt[SEG_TSS] = SEG16(STS_T32A, &cpu->ts, sizeof(cpu->ts)-1, 0);
168   cpu->gdt[SEG_TSS].s = 0;
169   cpu->ts.ss0 = SEG_KDATA << 3;
170   cpu->ts.esp0 = (uint)proc->kstack + KSTACKSIZE;
171   ltr(SEG_TSS << 3);
172   if(p->pgdir == 0)
173     panic("switchuvm: no pgdir");
174   lcr3(V2P(p->pgdir));  // switch to process's address space
175   popcli();
176 }
177 
178 // Load the initcode into address 0 of pgdir.
179 // sz must be less than a page.
180 void
181 inituvm(pde_t *pgdir, char *init, uint sz)
182 {
183   char *mem;
184 
185   if(sz >= PGSIZE)
186     panic("inituvm: more than a page");
187   mem = kalloc();
188   memset(mem, 0, PGSIZE);
189   mappages(pgdir, 0, PGSIZE, V2P(mem), PTE_W|PTE_U);
190   memmove(mem, init, sz);
191 }
192 
193 // Load a program segment into pgdir.  addr must be page-aligned
194 // and the pages from addr to addr+sz must already be mapped.
195 int
196 loaduvm(pde_t *pgdir, char *addr, struct inode *ip, uint offset, uint sz)
197 {
198   uint i, pa, n;
199   pte_t *pte;
200 
201   if((uint) addr % PGSIZE != 0)
202     panic("loaduvm: addr must be page aligned");
203   for(i = 0; i < sz; i += PGSIZE){
204     if((pte = walkpgdir(pgdir, addr+i, 0)) == 0)
205       panic("loaduvm: address should exist");
206     pa = PTE_ADDR(*pte);
207     if(sz - i < PGSIZE)
208       n = sz - i;
209     else
210       n = PGSIZE;
211     if(readi(ip, P2V(pa), offset+i, n) != n)
212       return -1;
213   }
214   return 0;
215 }
216 
217 // Allocate page tables and physical memory to grow process from oldsz to
218 // newsz, which need not be page aligned.  Returns new size or 0 on error.
219 int
220 allocuvm(pde_t *pgdir, uint oldsz, uint newsz)
221 {
222   char *mem;
223   uint a;
224 
225   if(newsz >= KERNBASE)
226     return 0;
227   if(newsz < oldsz)
228     return oldsz;
229 
230   a = PGROUNDUP(oldsz);
231   for(; a < newsz; a += PGSIZE){
232     mem = kalloc();
233     if(mem == 0){
234       cprintf("allocuvm out of memory\n");
235       deallocuvm(pgdir, newsz, oldsz);
236       return 0;
237     }
238     memset(mem, 0, PGSIZE);
239     if(mappages(pgdir, (char*)a, PGSIZE, V2P(mem), PTE_W|PTE_U) < 0){
240       cprintf("allocuvm out of memory (2)\n");
241       deallocuvm(pgdir, newsz, oldsz);
242       kfree(mem);
243       return 0;
244     }
245   }
246   return newsz;
247 }
248 
249 // Deallocate user pages to bring the process size from oldsz to
250 // newsz.  oldsz and newsz need not be page-aligned, nor does newsz
251 // need to be less than oldsz.  oldsz can be larger than the actual
252 // process size.  Returns the new process size.
253 int
254 deallocuvm(pde_t *pgdir, uint oldsz, uint newsz)
255 {
256   pte_t *pte;
257   uint a, pa;
258 
259   if(newsz >= oldsz)
260     return oldsz;
261 
262   a = PGROUNDUP(newsz);
263   for(; a  < oldsz; a += PGSIZE){
264     pte = walkpgdir(pgdir, (char*)a, 0);
265     if(!pte)
266       a += (NPTENTRIES - 1) * PGSIZE;
267     else if((*pte & PTE_P) != 0){
268       pa = PTE_ADDR(*pte);
269       if(pa == 0)
270         panic("kfree");
271       char *v = P2V(pa);
272       kfree(v);
273       *pte = 0;
274     }
275   }
276   return newsz;
277 }
278 
279 // Free a page table and all the physical memory pages
280 // in the user part.
281 void
282 freevm(pde_t *pgdir)
283 {
284   uint i;
285 
286   if(pgdir == 0)
287     panic("freevm: no pgdir");
288   deallocuvm(pgdir, KERNBASE, 0);
289   for(i = 0; i < NPDENTRIES; i++){
290     if(pgdir[i] & PTE_P){
291       char * v = P2V(PTE_ADDR(pgdir[i]));
292       kfree(v);
293     }
294   }
295   kfree((char*)pgdir);
296 }
297 
298 // Clear PTE_U on a page. Used to create an inaccessible
299 // page beneath the user stack.
300 void
301 clearpteu(pde_t *pgdir, char *uva)
302 {
303   pte_t *pte;
304 
305   pte = walkpgdir(pgdir, uva, 0);
306   if(pte == 0)
307     panic("clearpteu");
308   *pte &= ~PTE_U;
309 }
310 
311 // Given a parent process's page table, create a copy
312 // of it for a child.
313 pde_t*
314 copyuvm(pde_t *pgdir, uint sz)
315 {
316   pde_t *d;
317   pte_t *pte;
318   uint pa, i, flags;
319   char *mem;
320 
321   if((d = setupkvm()) == 0)
322     return 0;
323   for(i = 0; i < sz; i += PGSIZE){
324     if((pte = walkpgdir(pgdir, (void *) i, 0)) == 0)
325       panic("copyuvm: pte should exist");
326     if(!(*pte & PTE_P))
327       panic("copyuvm: page not present");
328     pa = PTE_ADDR(*pte);
329     flags = PTE_FLAGS(*pte);
330     if((mem = kalloc()) == 0)
331       goto bad;
332     memmove(mem, (char*)P2V(pa), PGSIZE);
333     if(mappages(d, (void*)i, PGSIZE, V2P(mem), flags) < 0)
334       goto bad;
335   }
336   return d;
337 
338 bad:
339   freevm(d);
340   return 0;
341 }
342 
343 //PAGEBREAK!
344 // Map user virtual address to kernel address.
345 char*
346 uva2ka(pde_t *pgdir, char *uva)
347 {
348   pte_t *pte;
349 
350   pte = walkpgdir(pgdir, uva, 0);
351   if((*pte & PTE_P) == 0)
352     return 0;
353   if((*pte & PTE_U) == 0)
354     return 0;
355   return (char*)P2V(PTE_ADDR(*pte));
356 }
357 
358 // Copy len bytes from p to user address va in page table pgdir.
359 // Most useful when pgdir is not the current page table.
360 // uva2ka ensures this only works for PTE_U pages.
361 int
362 copyout(pde_t *pgdir, uint va, void *p, uint len)
363 {
364   char *buf, *pa0;
365   uint n, va0;
366 
367   buf = (char*)p;
368   while(len > 0){
369     va0 = (uint)PGROUNDDOWN(va);
370     pa0 = uva2ka(pgdir, (char*)va0);
371     if(pa0 == 0)
372       return -1;
373     n = PGSIZE - (va - va0);
374     if(n > len)
375       n = len;
376     memmove(pa0 + (va - va0), buf, n);
377     len -= n;
378     buf += n;
379     va = va0 + PGSIZE;
380   }
381   return 0;
382 }
383 
384 //PAGEBREAK!
385 // Blank page.
386 //PAGEBREAK!
387 // Blank page.
388 //PAGEBREAK!
389 // Blank page.
390 
391