xref: /xv6-public/vm.c (revision 7e7cb106)
1 #include "param.h"
2 #include "types.h"
3 #include "defs.h"
4 #include "x86.h"
5 #include "memlayout.h"
6 #include "mmu.h"
7 #include "proc.h"
8 #include "elf.h"
9 
10 extern char data[];  // defined by kernel.ld
11 pde_t *kpgdir;  // for use in scheduler()
12 struct segdesc gdt[NSEGS];
13 
14 // Set up CPU's kernel segment descriptors.
15 // Run once on entry on each CPU.
16 void
17 seginit(void)
18 {
19   struct cpu *c;
20 
21   // Map "logical" addresses to virtual addresses using identity map.
22   // Cannot share a CODE descriptor for both kernel and user
23   // because it would have to have DPL_USR, but the CPU forbids
24   // an interrupt from CPL=0 to DPL=3.
25   c = &cpus[cpunum()];
26   c->gdt[SEG_KCODE] = SEG(STA_X|STA_R, 0, 0xffffffff, 0);
27   c->gdt[SEG_KDATA] = SEG(STA_W, 0, 0xffffffff, 0);
28   c->gdt[SEG_UCODE] = SEG(STA_X|STA_R, 0, 0xffffffff, DPL_USER);
29   c->gdt[SEG_UDATA] = SEG(STA_W, 0, 0xffffffff, DPL_USER);
30 
31   // Map cpu, and curproc
32   c->gdt[SEG_KCPU] = SEG(STA_W, &c->cpu, 8, 0);
33 
34   lgdt(c->gdt, sizeof(c->gdt));
35   loadgs(SEG_KCPU << 3);
36 
37   // Initialize cpu-local storage.
38   cpu = c;
39   proc = 0;
40 }
41 
42 // Return the address of the PTE in page table pgdir
43 // that corresponds to virtual address va.  If alloc!=0,
44 // create any required page table pages.
45 static pte_t *
46 walkpgdir(pde_t *pgdir, const void *va, char* (*alloc)(void))
47 {
48   pde_t *pde;
49   pte_t *pgtab;
50 
51   pde = &pgdir[PDX(va)];
52   if(*pde & PTE_P){
53     pgtab = (pte_t*)p2v(PTE_ADDR(*pde));
54   } else {
55     if(!alloc || (pgtab = (pte_t*)alloc()) == 0)
56       return 0;
57     // Make sure all those PTE_P bits are zero.
58     memset(pgtab, 0, PGSIZE);
59     // The permissions here are overly generous, but they can
60     // be further restricted by the permissions in the page table
61     // entries, if necessary.
62     *pde = v2p(pgtab) | PTE_P | PTE_W | PTE_U;
63   }
64   return &pgtab[PTX(va)];
65 }
66 
67 // Create PTEs for virtual addresses starting at va that refer to
68 // physical addresses starting at pa. va and size might not
69 // be page-aligned.
70 static int
71 mappages(pde_t *pgdir, void *va, uint size, uint pa,
72          int perm, char* (*alloc)(void))
73 {
74   char *a, *last;
75   pte_t *pte;
76 
77   a = (char*)PGROUNDDOWN((uint)va);
78   last = (char*)PGROUNDDOWN(((uint)va) + size - 1);
79   for(;;){
80     if((pte = walkpgdir(pgdir, a, alloc)) == 0)
81       return -1;
82     if(*pte & PTE_P)
83       panic("remap");
84     *pte = pa | perm | PTE_P;
85     if(a == last)
86       break;
87     a += PGSIZE;
88     pa += PGSIZE;
89   }
90   return 0;
91 }
92 
93 // There is one page table per process, plus one that's used when
94 // a CPU is not running any process (kpgdir). The kernel uses the
95 // current process's page table during system calls and interrupts;
96 // page protection bits prevent user code from using the kernel's
97 // mappings.
98 //
99 // setupkvm() and exec() set up every page table like this:
100 //
101 //   0..KERNBASE: user memory (text+data+stack+heap), mapped to
102 //                phys memory allocated by the kernel
103 //   KERNBASE..KERNBASE+EXTMEM: mapped to 0..EXTMEM (for I/O space)
104 //   KERNBASE+EXTMEM..data: mapped to EXTMEM..V2P(data)
105 //                for the kernel's instructions and r/o data
106 //   data..KERNBASE+PHYSTOP: mapped to V2P(data)..PHYSTOP,
107 //                                  rw data + free physical memory
108 //   0xfe000000..0: mapped direct (devices such as ioapic)
109 //
110 // The kernel allocates physical memory for its heap and for user memory
111 // between V2P(end) and the end of physical memory (PHYSTOP)
112 // (directly addressable from end..P2V(PHYSTOP)).
113 
114 // This table defines the kernel's mappings, which are present in
115 // every process's page table.
116 static struct kmap {
117   void *virt;
118   uint phys_start;
119   uint phys_end;
120   int perm;
121 } kmap[] = {
122   { (void*) KERNBASE, 0,             EXTMEM,    PTE_W},  // I/O space
123   { (void*) KERNLINK, V2P(KERNLINK), V2P(data), 0}, // kernel text+rodata
124   { (void*) data,     V2P(data),     PHYSTOP,   PTE_W},  // kernel data, memory
125   { (void*) DEVSPACE, DEVSPACE,      0,         PTE_W},  // more devices
126 };
127 
128 // Set up kernel part of a page table.
129 pde_t*
130 setupkvm(char* (*alloc)(void))
131 {
132   pde_t *pgdir;
133   struct kmap *k;
134 
135   if((pgdir = (pde_t*)alloc()) == 0)
136     return 0;
137   memset(pgdir, 0, PGSIZE);
138   if (p2v(PHYSTOP) > (void*)DEVSPACE)
139     panic("PHYSTOP too high");
140   for(k = kmap; k < &kmap[NELEM(kmap)]; k++)
141     if(mappages(pgdir, k->virt, k->phys_end - k->phys_start,
142                 (uint)k->phys_start, k->perm, alloc) < 0)
143       return 0;
144   return pgdir;
145 }
146 
147 // Allocate one page table for the machine for the kernel address
148 // space for scheduler processes.
149 void
150 kvmalloc(void)
151 {
152   kpgdir = setupkvm(enter_alloc);
153   switchkvm();
154 }
155 
156 // Switch h/w page table register to the kernel-only page table,
157 // for when no process is running.
158 void
159 switchkvm(void)
160 {
161   lcr3(v2p(kpgdir));   // switch to the kernel page table
162 }
163 
164 // Switch TSS and h/w page table to correspond to process p.
165 void
166 switchuvm(struct proc *p)
167 {
168   pushcli();
169   cpu->gdt[SEG_TSS] = SEG16(STS_T32A, &cpu->ts, sizeof(cpu->ts)-1, 0);
170   cpu->gdt[SEG_TSS].s = 0;
171   cpu->ts.ss0 = SEG_KDATA << 3;
172   cpu->ts.esp0 = (uint)proc->kstack + KSTACKSIZE;
173   ltr(SEG_TSS << 3);
174   if(p->pgdir == 0)
175     panic("switchuvm: no pgdir");
176   lcr3(v2p(p->pgdir));  // switch to new address space
177   popcli();
178 }
179 
180 // Load the initcode into address 0 of pgdir.
181 // sz must be less than a page.
182 void
183 inituvm(pde_t *pgdir, char *init, uint sz)
184 {
185   char *mem;
186 
187   if(sz >= PGSIZE)
188     panic("inituvm: more than a page");
189   mem = kalloc();
190   memset(mem, 0, PGSIZE);
191   mappages(pgdir, 0, PGSIZE, v2p(mem), PTE_W|PTE_U, kalloc);
192   memmove(mem, init, sz);
193 }
194 
195 // Load a program segment into pgdir.  addr must be page-aligned
196 // and the pages from addr to addr+sz must already be mapped.
197 int
198 loaduvm(pde_t *pgdir, char *addr, struct inode *ip, uint offset, uint sz)
199 {
200   uint i, pa, n;
201   pte_t *pte;
202 
203   if((uint) addr % PGSIZE != 0)
204     panic("loaduvm: addr must be page aligned");
205   for(i = 0; i < sz; i += PGSIZE){
206     if((pte = walkpgdir(pgdir, addr+i, 0)) == 0)
207       panic("loaduvm: address should exist");
208     pa = PTE_ADDR(*pte);
209     if(sz - i < PGSIZE)
210       n = sz - i;
211     else
212       n = PGSIZE;
213     if(readi(ip, p2v(pa), offset+i, n) != n)
214       return -1;
215   }
216   return 0;
217 }
218 
219 // Allocate page tables and physical memory to grow process from oldsz to
220 // newsz, which need not be page aligned.  Returns new size or 0 on error.
221 int
222 allocuvm(pde_t *pgdir, uint oldsz, uint newsz)
223 {
224   char *mem;
225   uint a;
226 
227   if(newsz >= KERNBASE)
228     return 0;
229   if(newsz < oldsz)
230     return oldsz;
231 
232   a = PGROUNDUP(oldsz);
233   for(; a < newsz; a += PGSIZE){
234     mem = kalloc();
235     if(mem == 0){
236       cprintf("allocuvm out of memory\n");
237       deallocuvm(pgdir, newsz, oldsz);
238       return 0;
239     }
240     memset(mem, 0, PGSIZE);
241     mappages(pgdir, (char*)a, PGSIZE, v2p(mem), PTE_W|PTE_U, kalloc);
242   }
243   return newsz;
244 }
245 
246 // Deallocate user pages to bring the process size from oldsz to
247 // newsz.  oldsz and newsz need not be page-aligned, nor does newsz
248 // need to be less than oldsz.  oldsz can be larger than the actual
249 // process size.  Returns the new process size.
250 int
251 deallocuvm(pde_t *pgdir, uint oldsz, uint newsz)
252 {
253   pte_t *pte;
254   uint a, pa;
255 
256   if(newsz >= oldsz)
257     return oldsz;
258 
259   a = PGROUNDUP(newsz);
260   for(; a  < oldsz; a += PGSIZE){
261     pte = walkpgdir(pgdir, (char*)a, 0);
262     if(!pte)
263       a += (NPTENTRIES - 1) * PGSIZE;
264     else if((*pte & PTE_P) != 0){
265       pa = PTE_ADDR(*pte);
266       if(pa == 0)
267         panic("kfree");
268       char *v = p2v(pa);
269       kfree(v);
270       *pte = 0;
271     }
272   }
273   return newsz;
274 }
275 
276 // Free a page table and all the physical memory pages
277 // in the user part.
278 void
279 freevm(pde_t *pgdir)
280 {
281   uint i;
282 
283   if(pgdir == 0)
284     panic("freevm: no pgdir");
285   deallocuvm(pgdir, KERNBASE, 0);
286   for(i = 0; i < NPDENTRIES; i++){
287     if(pgdir[i] & PTE_P){
288       char * v = p2v(PTE_ADDR(pgdir[i]));
289       kfree(v);
290     }
291   }
292   kfree((char*)pgdir);
293 }
294 
295 // Clear PTE_U on a page. Used to create an inaccessible
296 // page beneath the user stack.
297 void
298 clearpteu(pde_t *pgdir, char *uva)
299 {
300   pte_t *pte;
301 
302   pte = walkpgdir(pgdir, uva, 0);
303   if(pte == 0)
304     panic("clearpteu");
305   *pte &= ~PTE_U;
306 }
307 
308 // Given a parent process's page table, create a copy
309 // of it for a child.
310 pde_t*
311 copyuvm(pde_t *pgdir, uint sz)
312 {
313   pde_t *d;
314   pte_t *pte;
315   uint pa, i;
316   char *mem;
317 
318   if((d = setupkvm(kalloc)) == 0)
319     return 0;
320   for(i = 0; i < sz; i += PGSIZE){
321     if((pte = walkpgdir(pgdir, (void *) i, 0)) == 0)
322       panic("copyuvm: pte should exist");
323     if(!(*pte & PTE_P))
324       panic("copyuvm: page not present");
325     pa = PTE_ADDR(*pte);
326     if((mem = kalloc()) == 0)
327       goto bad;
328     memmove(mem, (char*)p2v(pa), PGSIZE);
329     if(mappages(d, (void*)i, PGSIZE, v2p(mem), PTE_W|PTE_U, kalloc) < 0)
330       goto bad;
331   }
332   return d;
333 
334 bad:
335   freevm(d);
336   return 0;
337 }
338 
339 //PAGEBREAK!
340 // Map user virtual address to kernel address.
341 char*
342 uva2ka(pde_t *pgdir, char *uva)
343 {
344   pte_t *pte;
345 
346   pte = walkpgdir(pgdir, uva, 0);
347   if((*pte & PTE_P) == 0)
348     return 0;
349   if((*pte & PTE_U) == 0)
350     return 0;
351   return (char*)p2v(PTE_ADDR(*pte));
352 }
353 
354 // Copy len bytes from p to user address va in page table pgdir.
355 // Most useful when pgdir is not the current page table.
356 // uva2ka ensures this only works for PTE_U pages.
357 int
358 copyout(pde_t *pgdir, uint va, void *p, uint len)
359 {
360   char *buf, *pa0;
361   uint n, va0;
362 
363   buf = (char*)p;
364   while(len > 0){
365     va0 = (uint)PGROUNDDOWN(va);
366     pa0 = uva2ka(pgdir, (char*)va0);
367     if(pa0 == 0)
368       return -1;
369     n = PGSIZE - (va - va0);
370     if(n > len)
371       n = len;
372     memmove(pa0 + (va - va0), buf, n);
373     len -= n;
374     buf += n;
375     va = va0 + PGSIZE;
376   }
377   return 0;
378 }
379