xref: /xv6-public/vm.c (revision 8d1f9963)
1 #include "param.h"
2 #include "types.h"
3 #include "defs.h"
4 #include "x86.h"
5 #include "memlayout.h"
6 #include "mmu.h"
7 #include "proc.h"
8 #include "elf.h"
9 
10 extern char data[];  // defined by kernel.ld
11 pde_t *kpgdir;  // for use in scheduler()
12 
13 // Set up CPU's kernel segment descriptors.
14 // Run once on entry on each CPU.
15 void
16 seginit(void)
17 {
18   struct cpu *c;
19 
20   // Map "logical" addresses to virtual addresses using identity map.
21   // Cannot share a CODE descriptor for both kernel and user
22   // because it would have to have DPL_USR, but the CPU forbids
23   // an interrupt from CPL=0 to DPL=3.
24   c = &cpus[cpunum()];
25   c->gdt[SEG_KCODE] = SEG(STA_X|STA_R, 0, 0xffffffff, 0);
26   c->gdt[SEG_KDATA] = SEG(STA_W, 0, 0xffffffff, 0);
27   c->gdt[SEG_UCODE] = SEG(STA_X|STA_R, 0, 0xffffffff, DPL_USER);
28   c->gdt[SEG_UDATA] = SEG(STA_W, 0, 0xffffffff, DPL_USER);
29 
30   // Map cpu and proc -- these are private per cpu.
31   c->gdt[SEG_KCPU] = SEG(STA_W, &c->cpu, 8, 0);
32 
33   lgdt(c->gdt, sizeof(c->gdt));
34   loadgs(SEG_KCPU << 3);
35 
36   // Initialize cpu-local storage.
37   cpu = c;
38   proc = 0;
39 }
40 
41 // Return the address of the PTE in page table pgdir
42 // that corresponds to virtual address va.  If alloc!=0,
43 // create any required page table pages.
44 static pte_t *
45 walkpgdir(pde_t *pgdir, const void *va, int alloc)
46 {
47   pde_t *pde;
48   pte_t *pgtab;
49 
50   pde = &pgdir[PDX(va)];
51   if(*pde & PTE_P){
52     pgtab = (pte_t*)P2V(PTE_ADDR(*pde));
53   } else {
54     if(!alloc || (pgtab = (pte_t*)kalloc()) == 0)
55       return 0;
56     // Make sure all those PTE_P bits are zero.
57     memset(pgtab, 0, PGSIZE);
58     // The permissions here are overly generous, but they can
59     // be further restricted by the permissions in the page table
60     // entries, if necessary.
61     *pde = V2P(pgtab) | PTE_P | PTE_W | PTE_U;
62   }
63   return &pgtab[PTX(va)];
64 }
65 
66 // Create PTEs for virtual addresses starting at va that refer to
67 // physical addresses starting at pa. va and size might not
68 // be page-aligned.
69 static int
70 mappages(pde_t *pgdir, void *va, uint size, uint pa, int perm)
71 {
72   char *a, *last;
73   pte_t *pte;
74 
75   a = (char*)PGROUNDDOWN((uint)va);
76   last = (char*)PGROUNDDOWN(((uint)va) + size - 1);
77   for(;;){
78     if((pte = walkpgdir(pgdir, a, 1)) == 0)
79       return -1;
80     if(*pte & PTE_P)
81       panic("remap");
82     *pte = pa | perm | PTE_P;
83     if(a == last)
84       break;
85     a += PGSIZE;
86     pa += PGSIZE;
87   }
88   return 0;
89 }
90 
91 // There is one page table per process, plus one that's used when
92 // a CPU is not running any process (kpgdir). The kernel uses the
93 // current process's page table during system calls and interrupts;
94 // page protection bits prevent user code from using the kernel's
95 // mappings.
96 //
97 // setupkvm() and exec() set up every page table like this:
98 //
99 //   0..KERNBASE: user memory (text+data+stack+heap), mapped to
100 //                phys memory allocated by the kernel
101 //   KERNBASE..KERNBASE+EXTMEM: mapped to 0..EXTMEM (for I/O space)
102 //   KERNBASE+EXTMEM..data: mapped to EXTMEM..V2P(data)
103 //                for the kernel's instructions and r/o data
104 //   data..KERNBASE+PHYSTOP: mapped to V2P(data)..PHYSTOP,
105 //                                  rw data + free physical memory
106 //   0xfe000000..0: mapped direct (devices such as ioapic)
107 //
108 // The kernel allocates physical memory for its heap and for user memory
109 // between V2P(end) and the end of physical memory (PHYSTOP)
110 // (directly addressable from end..P2V(PHYSTOP)).
111 
112 // This table defines the kernel's mappings, which are present in
113 // every process's page table.
114 static struct kmap {
115   void *virt;
116   uint phys_start;
117   uint phys_end;
118   int perm;
119 } kmap[] = {
120  { (void*)KERNBASE, 0,             EXTMEM,    PTE_W}, // I/O space
121  { (void*)KERNLINK, V2P(KERNLINK), V2P(data), 0},     // kern text+rodata
122  { (void*)data,     V2P(data),     PHYSTOP,   PTE_W}, // kern data+memory
123  { (void*)DEVSPACE, DEVSPACE,      0,         PTE_W}, // more devices
124 };
125 
126 // Set up kernel part of a page table.
127 pde_t*
128 setupkvm(void)
129 {
130   pde_t *pgdir;
131   struct kmap *k;
132 
133   if((pgdir = (pde_t*)kalloc()) == 0)
134     return 0;
135   memset(pgdir, 0, PGSIZE);
136   if (P2V(PHYSTOP) > (void*)DEVSPACE)
137     panic("PHYSTOP too high");
138   for(k = kmap; k < &kmap[NELEM(kmap)]; k++)
139     if(mappages(pgdir, k->virt, k->phys_end - k->phys_start,
140                 (uint)k->phys_start, k->perm) < 0)
141       return 0;
142   return pgdir;
143 }
144 
145 // Allocate one page table for the machine for the kernel address
146 // space for scheduler processes.
147 void
148 kvmalloc(void)
149 {
150   kpgdir = setupkvm();
151   switchkvm();
152 }
153 
154 // Switch h/w page table register to the kernel-only page table,
155 // for when no process is running.
156 void
157 switchkvm(void)
158 {
159   lcr3(V2P(kpgdir));   // switch to the kernel page table
160 }
161 
162 // Switch TSS and h/w page table to correspond to process p.
163 void
164 switchuvm(struct proc *p)
165 {
166   if(p == 0)
167     panic("switchuvm: no process");
168   if(p->kstack == 0)
169     panic("switchuvm: no kstack");
170   if(p->pgdir == 0)
171     panic("switchuvm: no pgdir");
172 
173   pushcli();
174   cpu->gdt[SEG_TSS] = SEG16(STS_T32A, &cpu->ts, sizeof(cpu->ts)-1, 0);
175   cpu->gdt[SEG_TSS].s = 0;
176   cpu->ts.ss0 = SEG_KDATA << 3;
177   cpu->ts.esp0 = (uint)p->kstack + KSTACKSIZE;
178   // setting IOPL=0 in eflags *and* iomb beyond the tss segment limit
179   // forbids I/O instructions (e.g., inb and outb) from user space
180   cpu->ts.iomb = (ushort) 0xFFFF;
181   ltr(SEG_TSS << 3);
182   lcr3(V2P(p->pgdir));  // switch to process's address space
183   popcli();
184 }
185 
186 // Load the initcode into address 0 of pgdir.
187 // sz must be less than a page.
188 void
189 inituvm(pde_t *pgdir, char *init, uint sz)
190 {
191   char *mem;
192 
193   if(sz >= PGSIZE)
194     panic("inituvm: more than a page");
195   mem = kalloc();
196   memset(mem, 0, PGSIZE);
197   mappages(pgdir, 0, PGSIZE, V2P(mem), PTE_W|PTE_U);
198   memmove(mem, init, sz);
199 }
200 
201 // Load a program segment into pgdir.  addr must be page-aligned
202 // and the pages from addr to addr+sz must already be mapped.
203 int
204 loaduvm(pde_t *pgdir, char *addr, struct inode *ip, uint offset, uint sz)
205 {
206   uint i, pa, n;
207   pte_t *pte;
208 
209   if((uint) addr % PGSIZE != 0)
210     panic("loaduvm: addr must be page aligned");
211   for(i = 0; i < sz; i += PGSIZE){
212     if((pte = walkpgdir(pgdir, addr+i, 0)) == 0)
213       panic("loaduvm: address should exist");
214     pa = PTE_ADDR(*pte);
215     if(sz - i < PGSIZE)
216       n = sz - i;
217     else
218       n = PGSIZE;
219     if(readi(ip, P2V(pa), offset+i, n) != n)
220       return -1;
221   }
222   return 0;
223 }
224 
225 // Allocate page tables and physical memory to grow process from oldsz to
226 // newsz, which need not be page aligned.  Returns new size or 0 on error.
227 int
228 allocuvm(pde_t *pgdir, uint oldsz, uint newsz)
229 {
230   char *mem;
231   uint a;
232 
233   if(newsz >= KERNBASE)
234     return 0;
235   if(newsz < oldsz)
236     return oldsz;
237 
238   a = PGROUNDUP(oldsz);
239   for(; a < newsz; a += PGSIZE){
240     mem = kalloc();
241     if(mem == 0){
242       cprintf("allocuvm out of memory\n");
243       deallocuvm(pgdir, newsz, oldsz);
244       return 0;
245     }
246     memset(mem, 0, PGSIZE);
247     if(mappages(pgdir, (char*)a, PGSIZE, V2P(mem), PTE_W|PTE_U) < 0){
248       cprintf("allocuvm out of memory (2)\n");
249       deallocuvm(pgdir, newsz, oldsz);
250       kfree(mem);
251       return 0;
252     }
253   }
254   return newsz;
255 }
256 
257 // Deallocate user pages to bring the process size from oldsz to
258 // newsz.  oldsz and newsz need not be page-aligned, nor does newsz
259 // need to be less than oldsz.  oldsz can be larger than the actual
260 // process size.  Returns the new process size.
261 int
262 deallocuvm(pde_t *pgdir, uint oldsz, uint newsz)
263 {
264   pte_t *pte;
265   uint a, pa;
266 
267   if(newsz >= oldsz)
268     return oldsz;
269 
270   a = PGROUNDUP(newsz);
271   for(; a  < oldsz; a += PGSIZE){
272     pte = walkpgdir(pgdir, (char*)a, 0);
273     if(!pte)
274       a = PGADDR(PDX(a) + 1, 0, 0) - PGSIZE;
275     else if((*pte & PTE_P) != 0){
276       pa = PTE_ADDR(*pte);
277       if(pa == 0)
278         panic("kfree");
279       char *v = P2V(pa);
280       kfree(v);
281       *pte = 0;
282     }
283   }
284   return newsz;
285 }
286 
287 // Free a page table and all the physical memory pages
288 // in the user part.
289 void
290 freevm(pde_t *pgdir)
291 {
292   uint i;
293 
294   if(pgdir == 0)
295     panic("freevm: no pgdir");
296   deallocuvm(pgdir, KERNBASE, 0);
297   for(i = 0; i < NPDENTRIES; i++){
298     if(pgdir[i] & PTE_P){
299       char * v = P2V(PTE_ADDR(pgdir[i]));
300       kfree(v);
301     }
302   }
303   kfree((char*)pgdir);
304 }
305 
306 // Clear PTE_U on a page. Used to create an inaccessible
307 // page beneath the user stack.
308 void
309 clearpteu(pde_t *pgdir, char *uva)
310 {
311   pte_t *pte;
312 
313   pte = walkpgdir(pgdir, uva, 0);
314   if(pte == 0)
315     panic("clearpteu");
316   *pte &= ~PTE_U;
317 }
318 
319 // Given a parent process's page table, create a copy
320 // of it for a child.
321 pde_t*
322 copyuvm(pde_t *pgdir, uint sz)
323 {
324   pde_t *d;
325   pte_t *pte;
326   uint pa, i, flags;
327   char *mem;
328 
329   if((d = setupkvm()) == 0)
330     return 0;
331   for(i = 0; i < sz; i += PGSIZE){
332     if((pte = walkpgdir(pgdir, (void *) i, 0)) == 0)
333       panic("copyuvm: pte should exist");
334     if(!(*pte & PTE_P))
335       panic("copyuvm: page not present");
336     pa = PTE_ADDR(*pte);
337     flags = PTE_FLAGS(*pte);
338     if((mem = kalloc()) == 0)
339       goto bad;
340     memmove(mem, (char*)P2V(pa), PGSIZE);
341     if(mappages(d, (void*)i, PGSIZE, V2P(mem), flags) < 0)
342       goto bad;
343   }
344   return d;
345 
346 bad:
347   freevm(d);
348   return 0;
349 }
350 
351 //PAGEBREAK!
352 // Map user virtual address to kernel address.
353 char*
354 uva2ka(pde_t *pgdir, char *uva)
355 {
356   pte_t *pte;
357 
358   pte = walkpgdir(pgdir, uva, 0);
359   if((*pte & PTE_P) == 0)
360     return 0;
361   if((*pte & PTE_U) == 0)
362     return 0;
363   return (char*)P2V(PTE_ADDR(*pte));
364 }
365 
366 // Copy len bytes from p to user address va in page table pgdir.
367 // Most useful when pgdir is not the current page table.
368 // uva2ka ensures this only works for PTE_U pages.
369 int
370 copyout(pde_t *pgdir, uint va, void *p, uint len)
371 {
372   char *buf, *pa0;
373   uint n, va0;
374 
375   buf = (char*)p;
376   while(len > 0){
377     va0 = (uint)PGROUNDDOWN(va);
378     pa0 = uva2ka(pgdir, (char*)va0);
379     if(pa0 == 0)
380       return -1;
381     n = PGSIZE - (va - va0);
382     if(n > len)
383       n = len;
384     memmove(pa0 + (va - va0), buf, n);
385     len -= n;
386     buf += n;
387     va = va0 + PGSIZE;
388   }
389   return 0;
390 }
391 
392 //PAGEBREAK!
393 // Blank page.
394 //PAGEBREAK!
395 // Blank page.
396 //PAGEBREAK!
397 // Blank page.
398 
399