xref: /xv6-public/vm.c (revision ed396c06)
1 #include "param.h"
2 #include "types.h"
3 #include "defs.h"
4 #include "x86.h"
5 #include "memlayout.h"
6 #include "mmu.h"
7 #include "proc.h"
8 #include "elf.h"
9 
10 extern char data[];  // defined by kernel.ld
11 pde_t *kpgdir;  // for use in scheduler()
12 
13 // Set up CPU's kernel segment descriptors.
14 // Run once on entry on each CPU.
15 void
16 seginit(void)
17 {
18   struct cpu *c;
19 
20   // Map "logical" addresses to virtual addresses using identity map.
21   // Cannot share a CODE descriptor for both kernel and user
22   // because it would have to have DPL_USR, but the CPU forbids
23   // an interrupt from CPL=0 to DPL=3.
24   c = &cpus[cpuid()];
25   c->gdt[SEG_KCODE] = SEG(STA_X|STA_R, 0, 0xffffffff, 0);
26   c->gdt[SEG_KDATA] = SEG(STA_W, 0, 0xffffffff, 0);
27   c->gdt[SEG_UCODE] = SEG(STA_X|STA_R, 0, 0xffffffff, DPL_USER);
28   c->gdt[SEG_UDATA] = SEG(STA_W, 0, 0xffffffff, DPL_USER);
29   lgdt(c->gdt, sizeof(c->gdt));
30 }
31 
32 // Return the address of the PTE in page table pgdir
33 // that corresponds to virtual address va.  If alloc!=0,
34 // create any required page table pages.
35 static pte_t *
36 walkpgdir(pde_t *pgdir, const void *va, int alloc)
37 {
38   pde_t *pde;
39   pte_t *pgtab;
40 
41   pde = &pgdir[PDX(va)];
42   if(*pde & PTE_P){
43     pgtab = (pte_t*)P2V(PTE_ADDR(*pde));
44   } else {
45     if(!alloc || (pgtab = (pte_t*)kalloc()) == 0)
46       return 0;
47     // Make sure all those PTE_P bits are zero.
48     memset(pgtab, 0, PGSIZE);
49     // The permissions here are overly generous, but they can
50     // be further restricted by the permissions in the page table
51     // entries, if necessary.
52     *pde = V2P(pgtab) | PTE_P | PTE_W | PTE_U;
53   }
54   return &pgtab[PTX(va)];
55 }
56 
57 // Create PTEs for virtual addresses starting at va that refer to
58 // physical addresses starting at pa. va and size might not
59 // be page-aligned.
60 static int
61 mappages(pde_t *pgdir, void *va, uint size, uint pa, int perm)
62 {
63   char *a, *last;
64   pte_t *pte;
65 
66   a = (char*)PGROUNDDOWN((uint)va);
67   last = (char*)PGROUNDDOWN(((uint)va) + size - 1);
68   for(;;){
69     if((pte = walkpgdir(pgdir, a, 1)) == 0)
70       return -1;
71     if(*pte & PTE_P)
72       panic("remap");
73     *pte = pa | perm | PTE_P;
74     if(a == last)
75       break;
76     a += PGSIZE;
77     pa += PGSIZE;
78   }
79   return 0;
80 }
81 
82 // There is one page table per process, plus one that's used when
83 // a CPU is not running any process (kpgdir). The kernel uses the
84 // current process's page table during system calls and interrupts;
85 // page protection bits prevent user code from using the kernel's
86 // mappings.
87 //
88 // setupkvm() and exec() set up every page table like this:
89 //
90 //   0..KERNBASE: user memory (text+data+stack+heap), mapped to
91 //                phys memory allocated by the kernel
92 //   KERNBASE..KERNBASE+EXTMEM: mapped to 0..EXTMEM (for I/O space)
93 //   KERNBASE+EXTMEM..data: mapped to EXTMEM..V2P(data)
94 //                for the kernel's instructions and r/o data
95 //   data..KERNBASE+PHYSTOP: mapped to V2P(data)..PHYSTOP,
96 //                                  rw data + free physical memory
97 //   0xfe000000..0: mapped direct (devices such as ioapic)
98 //
99 // The kernel allocates physical memory for its heap and for user memory
100 // between V2P(end) and the end of physical memory (PHYSTOP)
101 // (directly addressable from end..P2V(PHYSTOP)).
102 
103 // This table defines the kernel's mappings, which are present in
104 // every process's page table.
105 static struct kmap {
106   void *virt;
107   uint phys_start;
108   uint phys_end;
109   int perm;
110 } kmap[] = {
111  { (void*)KERNBASE, 0,             EXTMEM,    PTE_W}, // I/O space
112  { (void*)KERNLINK, V2P(KERNLINK), V2P(data), 0},     // kern text+rodata
113  { (void*)data,     V2P(data),     PHYSTOP,   PTE_W}, // kern data+memory
114  { (void*)DEVSPACE, DEVSPACE,      0,         PTE_W}, // more devices
115 };
116 
117 // Set up kernel part of a page table.
118 pde_t*
119 setupkvm(void)
120 {
121   pde_t *pgdir;
122   struct kmap *k;
123 
124   if((pgdir = (pde_t*)kalloc()) == 0)
125     return 0;
126   memset(pgdir, 0, PGSIZE);
127   if (P2V(PHYSTOP) > (void*)DEVSPACE)
128     panic("PHYSTOP too high");
129   for(k = kmap; k < &kmap[NELEM(kmap)]; k++)
130     if(mappages(pgdir, k->virt, k->phys_end - k->phys_start,
131                 (uint)k->phys_start, k->perm) < 0)
132       return 0;
133   return pgdir;
134 }
135 
136 // Allocate one page table for the machine for the kernel address
137 // space for scheduler processes.
138 void
139 kvmalloc(void)
140 {
141   kpgdir = setupkvm();
142   switchkvm();
143 }
144 
145 // Switch h/w page table register to the kernel-only page table,
146 // for when no process is running.
147 void
148 switchkvm(void)
149 {
150   lcr3(V2P(kpgdir));   // switch to the kernel page table
151 }
152 
153 // Switch TSS and h/w page table to correspond to process p.
154 void
155 switchuvm(struct proc *p)
156 {
157   if(p == 0)
158     panic("switchuvm: no process");
159   if(p->kstack == 0)
160     panic("switchuvm: no kstack");
161   if(p->pgdir == 0)
162     panic("switchuvm: no pgdir");
163 
164   pushcli();
165   mycpu()->gdt[SEG_TSS] = SEG16(STS_T32A, &mycpu()->ts, sizeof(mycpu()->ts)-1, 0);
166   mycpu()->gdt[SEG_TSS].s = 0;
167   mycpu()->ts.ss0 = SEG_KDATA << 3;
168   mycpu()->ts.esp0 = (uint)p->kstack + KSTACKSIZE;
169   // setting IOPL=0 in eflags *and* iomb beyond the tss segment limit
170   // forbids I/O instructions (e.g., inb and outb) from user space
171   mycpu()->ts.iomb = (ushort) 0xFFFF;
172   ltr(SEG_TSS << 3);
173   lcr3(V2P(p->pgdir));  // switch to process's address space
174   popcli();
175 }
176 
177 // Load the initcode into address 0 of pgdir.
178 // sz must be less than a page.
179 void
180 inituvm(pde_t *pgdir, char *init, uint sz)
181 {
182   char *mem;
183 
184   if(sz >= PGSIZE)
185     panic("inituvm: more than a page");
186   mem = kalloc();
187   memset(mem, 0, PGSIZE);
188   mappages(pgdir, 0, PGSIZE, V2P(mem), PTE_W|PTE_U);
189   memmove(mem, init, sz);
190 }
191 
192 // Load a program segment into pgdir.  addr must be page-aligned
193 // and the pages from addr to addr+sz must already be mapped.
194 int
195 loaduvm(pde_t *pgdir, char *addr, struct inode *ip, uint offset, uint sz)
196 {
197   uint i, pa, n;
198   pte_t *pte;
199 
200   if((uint) addr % PGSIZE != 0)
201     panic("loaduvm: addr must be page aligned");
202   for(i = 0; i < sz; i += PGSIZE){
203     if((pte = walkpgdir(pgdir, addr+i, 0)) == 0)
204       panic("loaduvm: address should exist");
205     pa = PTE_ADDR(*pte);
206     if(sz - i < PGSIZE)
207       n = sz - i;
208     else
209       n = PGSIZE;
210     if(readi(ip, P2V(pa), offset+i, n) != n)
211       return -1;
212   }
213   return 0;
214 }
215 
216 // Allocate page tables and physical memory to grow process from oldsz to
217 // newsz, which need not be page aligned.  Returns new size or 0 on error.
218 int
219 allocuvm(pde_t *pgdir, uint oldsz, uint newsz)
220 {
221   char *mem;
222   uint a;
223 
224   if(newsz >= KERNBASE)
225     return 0;
226   if(newsz < oldsz)
227     return oldsz;
228 
229   a = PGROUNDUP(oldsz);
230   for(; a < newsz; a += PGSIZE){
231     mem = kalloc();
232     if(mem == 0){
233       cprintf("allocuvm out of memory\n");
234       deallocuvm(pgdir, newsz, oldsz);
235       return 0;
236     }
237     memset(mem, 0, PGSIZE);
238     if(mappages(pgdir, (char*)a, PGSIZE, V2P(mem), PTE_W|PTE_U) < 0){
239       cprintf("allocuvm out of memory (2)\n");
240       deallocuvm(pgdir, newsz, oldsz);
241       kfree(mem);
242       return 0;
243     }
244   }
245   return newsz;
246 }
247 
248 // Deallocate user pages to bring the process size from oldsz to
249 // newsz.  oldsz and newsz need not be page-aligned, nor does newsz
250 // need to be less than oldsz.  oldsz can be larger than the actual
251 // process size.  Returns the new process size.
252 int
253 deallocuvm(pde_t *pgdir, uint oldsz, uint newsz)
254 {
255   pte_t *pte;
256   uint a, pa;
257 
258   if(newsz >= oldsz)
259     return oldsz;
260 
261   a = PGROUNDUP(newsz);
262   for(; a  < oldsz; a += PGSIZE){
263     pte = walkpgdir(pgdir, (char*)a, 0);
264     if(!pte)
265       a = PGADDR(PDX(a) + 1, 0, 0) - PGSIZE;
266     else if((*pte & PTE_P) != 0){
267       pa = PTE_ADDR(*pte);
268       if(pa == 0)
269         panic("kfree");
270       char *v = P2V(pa);
271       kfree(v);
272       *pte = 0;
273     }
274   }
275   return newsz;
276 }
277 
278 // Free a page table and all the physical memory pages
279 // in the user part.
280 void
281 freevm(pde_t *pgdir)
282 {
283   uint i;
284 
285   if(pgdir == 0)
286     panic("freevm: no pgdir");
287   deallocuvm(pgdir, KERNBASE, 0);
288   for(i = 0; i < NPDENTRIES; i++){
289     if(pgdir[i] & PTE_P){
290       char * v = P2V(PTE_ADDR(pgdir[i]));
291       kfree(v);
292     }
293   }
294   kfree((char*)pgdir);
295 }
296 
297 // Clear PTE_U on a page. Used to create an inaccessible
298 // page beneath the user stack.
299 void
300 clearpteu(pde_t *pgdir, char *uva)
301 {
302   pte_t *pte;
303 
304   pte = walkpgdir(pgdir, uva, 0);
305   if(pte == 0)
306     panic("clearpteu");
307   *pte &= ~PTE_U;
308 }
309 
310 // Given a parent process's page table, create a copy
311 // of it for a child.
312 pde_t*
313 copyuvm(pde_t *pgdir, uint sz)
314 {
315   pde_t *d;
316   pte_t *pte;
317   uint pa, i, flags;
318   char *mem;
319 
320   if((d = setupkvm()) == 0)
321     return 0;
322   for(i = 0; i < sz; i += PGSIZE){
323     if((pte = walkpgdir(pgdir, (void *) i, 0)) == 0)
324       panic("copyuvm: pte should exist");
325     if(!(*pte & PTE_P))
326       panic("copyuvm: page not present");
327     pa = PTE_ADDR(*pte);
328     flags = PTE_FLAGS(*pte);
329     if((mem = kalloc()) == 0)
330       goto bad;
331     memmove(mem, (char*)P2V(pa), PGSIZE);
332     if(mappages(d, (void*)i, PGSIZE, V2P(mem), flags) < 0)
333       goto bad;
334   }
335   return d;
336 
337 bad:
338   freevm(d);
339   return 0;
340 }
341 
342 //PAGEBREAK!
343 // Map user virtual address to kernel address.
344 char*
345 uva2ka(pde_t *pgdir, char *uva)
346 {
347   pte_t *pte;
348 
349   pte = walkpgdir(pgdir, uva, 0);
350   if((*pte & PTE_P) == 0)
351     return 0;
352   if((*pte & PTE_U) == 0)
353     return 0;
354   return (char*)P2V(PTE_ADDR(*pte));
355 }
356 
357 // Copy len bytes from p to user address va in page table pgdir.
358 // Most useful when pgdir is not the current page table.
359 // uva2ka ensures this only works for PTE_U pages.
360 int
361 copyout(pde_t *pgdir, uint va, void *p, uint len)
362 {
363   char *buf, *pa0;
364   uint n, va0;
365 
366   buf = (char*)p;
367   while(len > 0){
368     va0 = (uint)PGROUNDDOWN(va);
369     pa0 = uva2ka(pgdir, (char*)va0);
370     if(pa0 == 0)
371       return -1;
372     n = PGSIZE - (va - va0);
373     if(n > len)
374       n = len;
375     memmove(pa0 + (va - va0), buf, n);
376     len -= n;
377     buf += n;
378     va = va0 + PGSIZE;
379   }
380   return 0;
381 }
382 
383 //PAGEBREAK!
384 // Blank page.
385 //PAGEBREAK!
386 // Blank page.
387 //PAGEBREAK!
388 // Blank page.
389 
390