1 /*
2 * Copyright (C) 1995-2011 University of Karlsruhe. All right reserved.
3 *
4 * This file is part of libFirm.
5 *
6 * This file may be distributed and/or modified under the terms of the
7 * GNU General Public License version 2 as published by the Free Software
8 * Foundation and appearing in the file LICENSE.GPL included in the
9 * packaging of this file.
10 *
11 * Licensees holding valid libFirm Professional Edition licenses may use
12 * this file in accordance with the libFirm Commercial License.
13 * Agreement provided with the Software.
14 *
15 * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
16 * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR
17 * PURPOSE.
18 */
19
20 /**
21 * @file
22 * @brief Machine dependent Firm optimizations.
23 * @date 28.9.2004
24 * @author Sebastian Hack, Michael Beck
25 *
26 * Implements "Strength Reduction of Multiplications by Integer Constants"
27 * by Youfeng Wu.
28 * Implements Division and Modulo by Consts from "Hackers Delight",
29 */
30 #include "config.h"
31
32 #include <stdlib.h>
33 #include <assert.h>
34
35 #include "irnode_t.h"
36 #include "irgraph_t.h"
37 #include "irmode_t.h"
38 #include "iropt_t.h"
39 #include "ircons_t.h"
40 #include "irgmod.h"
41 #include "irverify.h"
42 #include "tv_t.h"
43 #include "dbginfo_t.h"
44 #include "iropt_dbg.h"
45 #include "irflag_t.h"
46 #include "irhooks.h"
47 #include "ircons.h"
48 #include "irarch.h"
49 #include "irflag.h"
50 #include "be.h"
51 #include "error.h"
52
53 /** The bit mask, which optimizations to apply. */
54 static arch_dep_opts_t opts;
55
arch_dep_set_opts(arch_dep_opts_t the_opts)56 void arch_dep_set_opts(arch_dep_opts_t the_opts)
57 {
58 opts = the_opts;
59 }
60
61 /** check, whether a mode allows a Mulh instruction. */
allow_Mulh(const ir_settings_arch_dep_t * params,ir_mode * mode)62 static int allow_Mulh(const ir_settings_arch_dep_t *params, ir_mode *mode)
63 {
64 if (get_mode_size_bits(mode) > params->max_bits_for_mulh)
65 return 0;
66 return (mode_is_signed(mode) && params->allow_mulhs) || (!mode_is_signed(mode) && params->allow_mulhu);
67 }
68
69 /**
70 * An instruction,
71 */
72 typedef struct instruction instruction;
73 struct instruction {
74 insn_kind kind; /**< the instruction kind */
75 instruction *in[2]; /**< the ins */
76 unsigned shift_count; /**< shift count for LEA and SHIFT */
77 ir_node *irn; /**< the generated node for this instruction if any. */
78 int costs; /**< the costs for this instruction */
79 };
80
81 /**
82 * The environment for the strength reduction of multiplications.
83 */
84 typedef struct mul_env {
85 struct obstack obst; /**< an obstack for local space. */
86 const ir_settings_arch_dep_t *params;
87 ir_mode *mode; /**< the mode of the multiplication constant */
88 unsigned bits; /**< number of bits in the mode */
89 unsigned max_S; /**< the maximum LEA shift value. */
90 instruction *root; /**< the root of the instruction tree */
91 ir_node *op; /**< the operand that is multiplied */
92 ir_node *blk; /**< the block where the new graph is built */
93 ir_graph *irg;
94 dbg_info *dbg; /**< the debug info for the new graph. */
95 ir_mode *shf_mode; /**< the (unsigned) mode for the shift constants */
96 int fail; /**< set to 1 if the instruction sequence fails the constraints */
97 int n_shift; /**< maximum number of allowed shift instructions */
98
99 evaluate_costs_func evaluate; /**< the evaluate callback */
100 } mul_env;
101
102 /**
103 * Some kind of default evaluator. Return the cost of
104 * instructions.
105 */
default_evaluate(insn_kind kind,const ir_mode * mode,ir_tarval * tv)106 static int default_evaluate(insn_kind kind, const ir_mode *mode, ir_tarval *tv)
107 {
108 (void) mode;
109 (void) tv;
110
111 if (kind == MUL)
112 return 13;
113 return 1;
114 }
115
116 /**
117 * emit a LEA (or an Add) instruction
118 */
emit_LEA(mul_env * env,instruction * a,instruction * b,unsigned shift)119 static instruction *emit_LEA(mul_env *env, instruction *a, instruction *b, unsigned shift)
120 {
121 instruction *res = OALLOC(&env->obst, instruction);
122 res->kind = shift > 0 ? LEA : ADD;
123 res->in[0] = a;
124 res->in[1] = b;
125 res->shift_count = shift;
126 res->irn = NULL;
127 res->costs = -1;
128 return res;
129 }
130
131 /**
132 * emit a SHIFT (or an Add or a Zero) instruction
133 */
emit_SHIFT(mul_env * env,instruction * a,unsigned shift)134 static instruction *emit_SHIFT(mul_env *env, instruction *a, unsigned shift)
135 {
136 instruction *res = OALLOC(&env->obst, instruction);
137 if (shift == env->bits) {
138 /* a 2^bits with bits resolution is a zero */
139 res->kind = ZERO;
140 res->in[0] = NULL;
141 res->in[1] = NULL;
142 res->shift_count = 0;
143 } else if (shift != 1) {
144 res->kind = SHIFT;
145 res->in[0] = a;
146 res->in[1] = NULL;
147 res->shift_count = shift;
148 } else {
149 res->kind = ADD;
150 res->in[0] = a;
151 res->in[1] = a;
152 res->shift_count = 0;
153 }
154 res->irn = NULL;
155 res->costs = -1;
156 return res;
157 }
158
159 /**
160 * emit a SUB instruction
161 */
emit_SUB(mul_env * env,instruction * a,instruction * b)162 static instruction *emit_SUB(mul_env *env, instruction *a, instruction *b)
163 {
164 instruction *res = OALLOC(&env->obst, instruction);
165 res->kind = SUB;
166 res->in[0] = a;
167 res->in[1] = b;
168 res->shift_count = 0;
169 res->irn = NULL;
170 res->costs = -1;
171 return res;
172 }
173
174 /**
175 * emit the ROOT instruction
176 */
emit_ROOT(mul_env * env,ir_node * root_op)177 static instruction *emit_ROOT(mul_env *env, ir_node *root_op)
178 {
179 instruction *res = OALLOC(&env->obst, instruction);
180 res->kind = ROOT;
181 res->in[0] = NULL;
182 res->in[1] = NULL;
183 res->shift_count = 0;
184 res->irn = root_op;
185 res->costs = 0;
186 return res;
187 }
188
189
190 /**
191 * Returns the condensed representation of the tarval tv
192 */
value_to_condensed(mul_env * env,ir_tarval * tv,int * pr)193 static unsigned char *value_to_condensed(mul_env *env, ir_tarval *tv, int *pr)
194 {
195 ir_mode *mode = get_tarval_mode(tv);
196 int bits = get_mode_size_bits(mode);
197 char *bitstr = get_tarval_bitpattern(tv);
198 int i, l, r;
199 unsigned char *R = (unsigned char*)obstack_alloc(&env->obst, bits);
200
201 l = r = 0;
202 for (i = 0; bitstr[i] != '\0'; ++i) {
203 if (bitstr[i] == '1') {
204 R[r] = i - l;
205 l = i;
206 ++r;
207 }
208 }
209 free(bitstr);
210
211 *pr = r;
212 return R;
213 }
214
215 /**
216 * Calculate the gain when using the generalized complementary technique
217 */
calculate_gain(unsigned char * R,int r)218 static int calculate_gain(unsigned char *R, int r)
219 {
220 int max_gain = 0;
221 int idx = -1, i;
222 int gain;
223
224 /* the gain for r == 1 */
225 gain = 2 - 3 - R[0];
226 for (i = 2; i < r; ++i) {
227 /* calculate the gain for r from the gain for r-1 */
228 gain += 2 - R[i - 1];
229
230 if (gain > max_gain) {
231 max_gain = gain;
232 idx = i;
233 }
234 }
235 return idx;
236 }
237
238 /**
239 * Calculates the condensed complement of a given (R,r) tuple
240 */
complement_condensed(mul_env * env,unsigned char * R,int r,int gain,int * prs)241 static unsigned char *complement_condensed(mul_env *env, unsigned char *R, int r, int gain, int *prs)
242 {
243 unsigned char *value = (unsigned char*)obstack_alloc(&env->obst, env->bits);
244 int i, l, j;
245 unsigned char c;
246
247 memset(value, 0, env->bits);
248
249 j = 0;
250 for (i = 0; i < gain; ++i) {
251 j += R[i];
252 value[j] = 1;
253 }
254
255 /* negate and propagate 1 */
256 c = 1;
257 for (i = 0; i <= j; ++i) {
258 unsigned char v = !value[i];
259
260 value[i] = v ^ c;
261 c = v & c;
262 }
263
264 /* condense it again */
265 l = r = 0;
266 R = value;
267 for (i = 0; i <= j; ++i) {
268 if (value[i] == 1) {
269 R[r] = i - l;
270 l = i;
271 ++r;
272 }
273 }
274
275 *prs = r;
276 return R;
277 }
278
279 /**
280 * creates a tarval from a condensed representation.
281 */
condensed_to_value(mul_env * env,unsigned char * R,int r)282 static ir_tarval *condensed_to_value(mul_env *env, unsigned char *R, int r)
283 {
284 ir_tarval *tv = get_mode_one(env->mode);
285 ir_tarval *res = NULL;
286 for (int i = 0; i < r; ++i) {
287 int j = R[i];
288 if (j) {
289 ir_tarval *t = new_tarval_from_long(j, mode_Iu);
290 tv = tarval_shl(tv, t);
291 }
292 res = res ? tarval_add(res, tv) : tv;
293 }
294 return res;
295 }
296
297 /* forward */
298 static instruction *basic_decompose_mul(mul_env *env, unsigned char *R, int r, ir_tarval *N);
299
300 /*
301 * handle simple cases with up-to 2 bits set
302 */
decompose_simple_cases(mul_env * env,unsigned char * R,int r,ir_tarval * N)303 static instruction *decompose_simple_cases(mul_env *env, unsigned char *R, int r, ir_tarval *N)
304 {
305 instruction *ins, *ins2;
306
307 (void) N;
308 if (r == 1) {
309 return emit_SHIFT(env, env->root, R[0]);
310 } else {
311 assert(r == 2);
312
313 ins = env->root;
314 if (R[1] <= env->max_S) {
315 ins = emit_LEA(env, ins, ins, R[1]);
316 if (R[0] != 0) {
317 ins = emit_SHIFT(env, ins, R[0]);
318 }
319 return ins;
320 }
321 if (R[0] != 0) {
322 ins = emit_SHIFT(env, ins, R[0]);
323 }
324
325 ins2 = emit_SHIFT(env, env->root, R[0] + R[1]);
326 return emit_LEA(env, ins, ins2, 0);
327 }
328 }
329
330 /**
331 * Main decompose driver.
332 */
decompose_mul(mul_env * env,unsigned char * R,int r,ir_tarval * N)333 static instruction *decompose_mul(mul_env *env, unsigned char *R, int r, ir_tarval *N)
334 {
335 unsigned i;
336 int gain;
337
338 if (r <= 2)
339 return decompose_simple_cases(env, R, r, N);
340
341 if (env->params->also_use_subs) {
342 gain = calculate_gain(R, r);
343 if (gain > 0) {
344 instruction *instr1, *instr2;
345 unsigned char *R1, *R2;
346 int r1, r2, i, k, j;
347
348 R1 = complement_condensed(env, R, r, gain, &r1);
349 r2 = r - gain + 1;
350 R2 = (unsigned char*)obstack_alloc(&env->obst, r2);
351
352 k = 1;
353 for (i = 0; i < gain; ++i) {
354 k += R[i];
355 }
356 R2[0] = k;
357 R2[1] = R[gain] - 1;
358 j = 2;
359 if (R2[1] == 0) {
360 /* Two identical bits: normalize */
361 ++R2[0];
362 --j;
363 --r2;
364 }
365 for (i = gain + 1; i < r; ++i) {
366 R2[j++] = R[i];
367 }
368
369 instr1 = decompose_mul(env, R1, r1, NULL);
370 instr2 = decompose_mul(env, R2, r2, NULL);
371 return emit_SUB(env, instr2, instr1);
372 }
373 }
374
375 if (N == NULL)
376 N = condensed_to_value(env, R, r);
377
378 for (i = env->max_S; i > 0; --i) {
379 ir_tarval *div_res, *mod_res;
380 ir_tarval *tv = new_tarval_from_long((1 << i) + 1, env->mode);
381
382 div_res = tarval_divmod(N, tv, &mod_res);
383 if (mod_res == get_mode_null(env->mode)) {
384 unsigned char *Rs;
385 int rs;
386
387 Rs = value_to_condensed(env, div_res, &rs);
388 if (rs < r) {
389 instruction *N1 = decompose_mul(env, Rs, rs, div_res);
390 return emit_LEA(env, N1, N1, i);
391 }
392 }
393 }
394 return basic_decompose_mul(env, R, r, N);
395 }
396
397 #define IMAX(a,b) ((a) > (b) ? (a) : (b))
398
399 /**
400 * basic decomposition routine
401 */
basic_decompose_mul(mul_env * env,unsigned char * R,int r,ir_tarval * N)402 static instruction *basic_decompose_mul(mul_env *env, unsigned char *R, int r, ir_tarval *N)
403 {
404 instruction *Ns;
405 unsigned t;
406
407 if (R[0] == 0) { /* Case 1 */
408 t = R[1] > IMAX(env->max_S, R[1]);
409 R[1] -= t;
410 Ns = decompose_mul(env, &R[1], r - 1, N);
411 return emit_LEA(env, env->root, Ns, t);
412 } else if (R[0] <= env->max_S) { /* Case 2 */
413 t = R[0];
414 R[1] += t;
415 Ns = decompose_mul(env, &R[1], r - 1, N);
416 return emit_LEA(env, Ns, env->root, t);
417 } else {
418 t = R[0];
419 R[0] = 0;
420 Ns = decompose_mul(env, R, r, N);
421 return emit_SHIFT(env, Ns, t);
422 }
423 }
424
425 /**
426 * recursive build the graph form the instructions.
427 *
428 * @param env the environment
429 * @param inst the instruction
430 */
build_graph(mul_env * env,instruction * inst)431 static ir_node *build_graph(mul_env *env, instruction *inst)
432 {
433 ir_node *l, *r, *c;
434 ir_graph *irg = env->irg;
435
436 if (inst->irn)
437 return inst->irn;
438
439 switch (inst->kind) {
440 case LEA:
441 l = build_graph(env, inst->in[0]);
442 r = build_graph(env, inst->in[1]);
443 c = new_r_Const_long(irg, env->shf_mode, inst->shift_count);
444 r = new_rd_Shl(env->dbg, env->blk, r, c, env->mode);
445 return inst->irn = new_rd_Add(env->dbg, env->blk, l, r, env->mode);
446 case SHIFT:
447 l = build_graph(env, inst->in[0]);
448 c = new_r_Const_long(irg, env->shf_mode, inst->shift_count);
449 return inst->irn = new_rd_Shl(env->dbg, env->blk, l, c, env->mode);
450 case SUB:
451 l = build_graph(env, inst->in[0]);
452 r = build_graph(env, inst->in[1]);
453 return inst->irn = new_rd_Sub(env->dbg, env->blk, l, r, env->mode);
454 case ADD:
455 l = build_graph(env, inst->in[0]);
456 r = build_graph(env, inst->in[1]);
457 return inst->irn = new_rd_Add(env->dbg, env->blk, l, r, env->mode);
458 case ZERO:
459 return inst->irn = new_r_Const(irg, get_mode_null(env->mode));
460 default:
461 panic("Unsupported instruction kind");
462 }
463 }
464
465 /**
466 * Calculate the costs for the given instruction sequence.
467 * Note that additional costs due to higher register pressure are NOT evaluated yet
468 */
evaluate_insn(mul_env * env,instruction * inst)469 static int evaluate_insn(mul_env *env, instruction *inst)
470 {
471 int costs;
472
473 if (inst->costs >= 0) {
474 /* was already evaluated */
475 return 0;
476 }
477
478 switch (inst->kind) {
479 case LEA:
480 case SUB:
481 case ADD:
482 costs = evaluate_insn(env, inst->in[0]);
483 costs += evaluate_insn(env, inst->in[1]);
484 costs += env->evaluate(inst->kind, env->mode, NULL);
485 inst->costs = costs;
486 return costs;
487 case SHIFT:
488 if (inst->shift_count > env->params->highest_shift_amount)
489 env->fail = 1;
490 if (env->n_shift <= 0)
491 env->fail = 1;
492 else
493 --env->n_shift;
494 costs = evaluate_insn(env, inst->in[0]);
495 costs += env->evaluate(inst->kind, env->mode, NULL);
496 inst->costs = costs;
497 return costs;
498 case ZERO:
499 inst->costs = costs = env->evaluate(inst->kind, env->mode, NULL);
500 return costs;
501 case MUL:
502 case ROOT:
503 break;
504 }
505 panic("Unsupported instruction kind");
506 }
507
508 /**
509 * Evaluate the replacement instructions and build a new graph
510 * if faster than the Mul.
511 * Returns the root of the new graph then or irn otherwise.
512 *
513 * @param irn the Mul operation
514 * @param operand the multiplication operand
515 * @param tv the multiplication constant
516 *
517 * @return the new graph
518 */
do_decomposition(ir_node * irn,ir_node * operand,ir_tarval * tv)519 static ir_node *do_decomposition(ir_node *irn, ir_node *operand, ir_tarval *tv)
520 {
521 mul_env env;
522 instruction *inst;
523 unsigned char *R;
524 int r;
525 ir_node *res = irn;
526 int mul_costs;
527
528 obstack_init(&env.obst);
529 env.params = be_get_backend_param()->dep_param;
530 env.mode = get_tarval_mode(tv);
531 env.bits = (unsigned)get_mode_size_bits(env.mode);
532 env.max_S = 3;
533 env.root = emit_ROOT(&env, operand);
534 env.fail = 0;
535 env.n_shift = env.params->maximum_shifts;
536 env.evaluate = env.params->evaluate != NULL ? env.params->evaluate : default_evaluate;
537 env.irg = get_irn_irg(irn);
538
539 R = value_to_condensed(&env, tv, &r);
540 inst = decompose_mul(&env, R, r, tv);
541
542 /* the paper suggests 70% here */
543 mul_costs = (env.evaluate(MUL, env.mode, tv) * 7 + 5) / 10;
544 if (evaluate_insn(&env, inst) <= mul_costs && !env.fail) {
545 env.op = operand;
546 env.blk = get_nodes_block(irn);
547 env.dbg = get_irn_dbg_info(irn);
548 env.shf_mode = find_unsigned_mode(env.mode);
549 if (env.shf_mode == NULL)
550 env.shf_mode = mode_Iu;
551
552 res = build_graph(&env, inst);
553 }
554 obstack_free(&env.obst, NULL);
555 return res;
556 }
557
558 /* Replace Muls with Shifts and Add/Subs. */
arch_dep_replace_mul_with_shifts(ir_node * irn)559 ir_node *arch_dep_replace_mul_with_shifts(ir_node *irn)
560 {
561 ir_node *res = irn;
562 ir_mode *mode = get_irn_mode(irn);
563 ir_graph *irg;
564 ir_node *left;
565 ir_node *right;
566 ir_node *operand;
567 ir_tarval *tv;
568 const ir_settings_arch_dep_t *params = be_get_backend_param()->dep_param;
569
570 /* If the architecture dependent optimizations were not initialized
571 or this optimization was not enabled. */
572 if (params == NULL || (opts & arch_dep_mul_to_shift) == 0)
573 return res;
574
575 assert(is_Mul(irn));
576 if (!mode_is_int(mode))
577 return res;
578
579 /* we should never do the reverse transformations again
580 (like x+x -> 2*x) */
581 irg = get_irn_irg(irn);
582 add_irg_constraints(irg, IR_GRAPH_CONSTRAINT_ARCH_DEP);
583
584 left = get_binop_left(irn);
585 right = get_binop_right(irn);
586 tv = NULL;
587 operand = NULL;
588
589 /* Look, if one operand is a constant. */
590 if (is_Const(left)) {
591 tv = get_Const_tarval(left);
592 operand = right;
593 } else if (is_Const(right)) {
594 tv = get_Const_tarval(right);
595 operand = left;
596 }
597
598 /* multiplications with 0 are a special case which we leave for
599 * equivalent_node_Mul because the code here can't handle them */
600 if (tv == get_mode_null(mode))
601 return res;
602
603 if (tv != NULL) {
604 res = do_decomposition(irn, operand, tv);
605
606 if (res != irn) {
607 hook_arch_dep_replace_mul_with_shifts(irn);
608 exchange(irn, res);
609 }
610 }
611
612 return res;
613 }
614
615 /**
616 * calculated the ld2 of a tarval if tarval is 2^n, else returns -1.
617 */
tv_ld2(ir_tarval * tv,int bits)618 static int tv_ld2(ir_tarval *tv, int bits)
619 {
620 int i, k = 0, num;
621
622 for (num = i = 0; i < bits; ++i) {
623 unsigned char v = get_tarval_sub_bits(tv, i);
624
625 if (v) {
626 int j;
627
628 for (j = 0; j < 8; ++j)
629 if ((1 << j) & v) {
630 ++num;
631 k = 8 * i + j;
632 }
633 }
634 }
635 if (num == 1)
636 return k;
637 return -1;
638 }
639
640
641 /* for shorter lines */
642 #define ABS(a) tarval_abs(a)
643 #define NEG(a) tarval_neg(a)
644 #define NOT(a) tarval_not(a)
645 #define SHL(a, b) tarval_shl(a, b)
646 #define SHR(a, b) tarval_shr(a, b)
647 #define ADD(a, b) tarval_add(a, b)
648 #define SUB(a, b) tarval_sub(a, b, NULL)
649 #define MUL(a, b) tarval_mul(a, b)
650 #define DIV(a, b) tarval_div(a, b)
651 #define MOD(a, b) tarval_mod(a, b)
652 #define CMP(a, b) tarval_cmp(a, b)
653 #define CNV(a, m) tarval_convert_to(a, m)
654 #define ONE(m) get_mode_one(m)
655 #define ZERO(m) get_mode_null(m)
656
657 /** The result of a the magic() function. */
658 struct ms {
659 ir_tarval *M; /**< magic number */
660 int s; /**< shift amount */
661 int need_add; /**< an additional add is needed */
662 int need_sub; /**< an additional sub is needed */
663 };
664
665 /**
666 * Signed division by constant d: calculate the Magic multiplier M and the shift amount s
667 *
668 * see Hacker's Delight: 10-6 Integer Division by Constants: Incorporation into a Compiler
669 */
magic(ir_tarval * d)670 static struct ms magic(ir_tarval *d)
671 {
672 ir_mode *mode = get_tarval_mode(d);
673 ir_mode *u_mode = find_unsigned_mode(mode);
674 int bits = get_mode_size_bits(u_mode);
675 int p;
676 ir_tarval *ad, *anc, *delta, *q1, *r1, *q2, *r2, *t; /* unsigned */
677 ir_relation d_cmp, M_cmp;
678
679 ir_tarval *bits_minus_1, *two_bits_1;
680
681 struct ms mag;
682
683 tarval_int_overflow_mode_t rem = tarval_get_integer_overflow_mode();
684
685 /* we need overflow mode to work correctly */
686 tarval_set_integer_overflow_mode(TV_OVERFLOW_WRAP);
687
688 /* 2^(bits-1) */
689 bits_minus_1 = new_tarval_from_long(bits - 1, u_mode);
690 two_bits_1 = SHL(get_mode_one(u_mode), bits_minus_1);
691
692 ad = CNV(ABS(d), u_mode);
693 t = ADD(two_bits_1, SHR(CNV(d, u_mode), bits_minus_1));
694 anc = SUB(SUB(t, ONE(u_mode)), MOD(t, ad)); /* Absolute value of nc */
695 p = bits - 1; /* Init: p */
696 q1 = DIV(two_bits_1, anc); /* Init: q1 = 2^p/|nc| */
697 r1 = SUB(two_bits_1, MUL(q1, anc)); /* Init: r1 = rem(2^p, |nc|) */
698 q2 = DIV(two_bits_1, ad); /* Init: q2 = 2^p/|d| */
699 r2 = SUB(two_bits_1, MUL(q2, ad)); /* Init: r2 = rem(2^p, |d|) */
700
701 do {
702 ++p;
703 q1 = ADD(q1, q1); /* Update q1 = 2^p/|nc| */
704 r1 = ADD(r1, r1); /* Update r1 = rem(2^p, |nc|) */
705
706 if (CMP(r1, anc) & ir_relation_greater_equal) {
707 q1 = ADD(q1, ONE(u_mode));
708 r1 = SUB(r1, anc);
709 }
710
711 q2 = ADD(q2, q2); /* Update q2 = 2^p/|d| */
712 r2 = ADD(r2, r2); /* Update r2 = rem(2^p, |d|) */
713
714 if (CMP(r2, ad) & ir_relation_greater_equal) {
715 q2 = ADD(q2, ONE(u_mode));
716 r2 = SUB(r2, ad);
717 }
718
719 delta = SUB(ad, r2);
720 } while (CMP(q1, delta) & ir_relation_less || (CMP(q1, delta) & ir_relation_equal && CMP(r1, ZERO(u_mode)) & ir_relation_equal));
721
722 d_cmp = CMP(d, ZERO(mode));
723
724 if (d_cmp & ir_relation_greater_equal)
725 mag.M = ADD(CNV(q2, mode), ONE(mode));
726 else
727 mag.M = SUB(ZERO(mode), ADD(CNV(q2, mode), ONE(mode)));
728
729 M_cmp = CMP(mag.M, ZERO(mode));
730
731 mag.s = p - bits;
732
733 /* need an add if d > 0 && M < 0 */
734 mag.need_add = d_cmp & ir_relation_greater && M_cmp & ir_relation_less;
735
736 /* need a sub if d < 0 && M > 0 */
737 mag.need_sub = d_cmp & ir_relation_less && M_cmp & ir_relation_greater;
738
739 tarval_set_integer_overflow_mode(rem);
740
741 return mag;
742 }
743
744 /** The result of the magicu() function. */
745 struct mu {
746 ir_tarval *M; /**< magic add constant */
747 int s; /**< shift amount */
748 int need_add; /**< add indicator */
749 };
750
751 /**
752 * Unsigned division by constant d: calculate the Magic multiplier M and the shift amount s
753 *
754 * see Hacker's Delight: 10-10 Integer Division by Constants: Incorporation into a Compiler (Unsigned)
755 */
magicu(ir_tarval * d)756 static struct mu magicu(ir_tarval *d)
757 {
758 ir_mode *mode = get_tarval_mode(d);
759 int bits = get_mode_size_bits(mode);
760 int p;
761 ir_tarval *nc, *delta, *q1, *r1, *q2, *r2;
762 ir_tarval *bits_minus_1, *two_bits_1, *seven_ff;
763
764 struct mu magu;
765
766 tarval_int_overflow_mode_t rem = tarval_get_integer_overflow_mode();
767
768 /* we need overflow mode to work correctly */
769 tarval_set_integer_overflow_mode(TV_OVERFLOW_WRAP);
770
771 bits_minus_1 = new_tarval_from_long(bits - 1, mode);
772 two_bits_1 = SHL(get_mode_one(mode), bits_minus_1);
773 seven_ff = SUB(two_bits_1, ONE(mode));
774
775 magu.need_add = 0; /* initialize the add indicator */
776 nc = SUB(NEG(ONE(mode)), MOD(NEG(d), d));
777 p = bits - 1; /* Init: p */
778 q1 = DIV(two_bits_1, nc); /* Init: q1 = 2^p/nc */
779 r1 = SUB(two_bits_1, MUL(q1, nc)); /* Init: r1 = rem(2^p, nc) */
780 q2 = DIV(seven_ff, d); /* Init: q2 = (2^p - 1)/d */
781 r2 = SUB(seven_ff, MUL(q2, d)); /* Init: r2 = rem(2^p - 1, d) */
782
783 do {
784 ++p;
785 if (CMP(r1, SUB(nc, r1)) & ir_relation_greater_equal) {
786 q1 = ADD(ADD(q1, q1), ONE(mode));
787 r1 = SUB(ADD(r1, r1), nc);
788 }
789 else {
790 q1 = ADD(q1, q1);
791 r1 = ADD(r1, r1);
792 }
793
794 if (CMP(ADD(r2, ONE(mode)), SUB(d, r2)) & ir_relation_greater_equal) {
795 if (CMP(q2, seven_ff) & ir_relation_greater_equal)
796 magu.need_add = 1;
797
798 q2 = ADD(ADD(q2, q2), ONE(mode));
799 r2 = SUB(ADD(ADD(r2, r2), ONE(mode)), d);
800 }
801 else {
802 if (CMP(q2, two_bits_1) & ir_relation_greater_equal)
803 magu.need_add = 1;
804
805 q2 = ADD(q2, q2);
806 r2 = ADD(ADD(r2, r2), ONE(mode));
807 }
808 delta = SUB(SUB(d, ONE(mode)), r2);
809 } while (p < 2*bits &&
810 (CMP(q1, delta) & ir_relation_less || (CMP(q1, delta) & ir_relation_equal && CMP(r1, ZERO(mode)) & ir_relation_equal)));
811
812 magu.M = ADD(q2, ONE(mode)); /* Magic number */
813 magu.s = p - bits; /* and shift amount */
814
815 tarval_set_integer_overflow_mode(rem);
816
817 return magu;
818 }
819
820 /**
821 * Build the Mulh replacement code for n / tv.
822 *
823 * Note that 'div' might be a Mod operation as well
824 */
replace_div_by_mulh(ir_node * div,ir_tarval * tv)825 static ir_node *replace_div_by_mulh(ir_node *div, ir_tarval *tv)
826 {
827 dbg_info *dbg = get_irn_dbg_info(div);
828 ir_node *n = get_binop_left(div);
829 ir_node *block = get_nodes_block(div);
830 ir_mode *mode = get_irn_mode(n);
831 int bits = get_mode_size_bits(mode);
832 ir_node *q;
833
834 /* Beware: do not transform bad code */
835 if (is_Bad(n) || is_Bad(block))
836 return div;
837
838 if (mode_is_signed(mode)) {
839 ir_graph *irg = get_irn_irg(div);
840 struct ms mag = magic(tv);
841
842 /* generate the Mulh instruction */
843 ir_node *c = new_r_Const(irg, mag.M);
844 ir_node *t;
845 q = new_rd_Mulh(dbg, block, n, c, mode);
846
847 /* do we need an Add or Sub */
848 if (mag.need_add)
849 q = new_rd_Add(dbg, block, q, n, mode);
850 else if (mag.need_sub)
851 q = new_rd_Sub(dbg, block, q, n, mode);
852
853 /* Do we need the shift */
854 if (mag.s > 0) {
855 c = new_r_Const_long(irg, mode_Iu, mag.s);
856 q = new_rd_Shrs(dbg, block, q, c, mode);
857 }
858
859 /* final */
860 c = new_r_Const_long(irg, mode_Iu, bits - 1);
861 t = new_rd_Shr(dbg, block, q, c, mode);
862
863 q = new_rd_Add(dbg, block, q, t, mode);
864 } else {
865 struct mu mag = magicu(tv);
866 ir_graph *irg = get_irn_irg(div);
867
868 /* generate the Mulh instruction */
869 ir_node *c = new_r_Const(irg, mag.M);
870 q = new_rd_Mulh(dbg, block, n, c, mode);
871
872 if (mag.need_add) {
873 if (mag.s > 0) {
874 /* use the GM scheme */
875 ir_node *t = new_rd_Sub(dbg, block, n, q, mode);
876
877 c = new_r_Const(irg, get_mode_one(mode_Iu));
878 t = new_rd_Shr(dbg, block, t, c, mode);
879
880 t = new_rd_Add(dbg, block, t, q, mode);
881
882 c = new_r_Const_long(irg, mode_Iu, mag.s - 1);
883 q = new_rd_Shr(dbg, block, t, c, mode);
884 } else {
885 /* use the default scheme */
886 q = new_rd_Add(dbg, block, q, n, mode);
887 }
888 } else if (mag.s > 0) { /* default scheme, shift needed */
889 c = new_r_Const_long(irg, mode_Iu, mag.s);
890 q = new_rd_Shr(dbg, block, q, c, mode);
891 }
892 }
893 return q;
894 }
895
896 /* Replace Divs with Shifts and Add/Subs and Mulh. */
arch_dep_replace_div_by_const(ir_node * irn)897 ir_node *arch_dep_replace_div_by_const(ir_node *irn)
898 {
899 const ir_settings_arch_dep_t *params = be_get_backend_param()->dep_param;
900 ir_node *res = irn;
901
902 /* If the architecture dependent optimizations were not initialized
903 or this optimization was not enabled. */
904 if (params == NULL || (opts & arch_dep_div_by_const) == 0)
905 return irn;
906
907 if (!is_Div(irn))
908 return irn;
909
910 ir_node *c = get_Div_right(irn);
911 ir_node *block, *left;
912 ir_mode *mode;
913 ir_tarval *tv, *ntv;
914 dbg_info *dbg;
915 int n, bits;
916 int k;
917 int n_flag = 0;
918
919 if (! is_Const(c))
920 return irn;
921
922 tv = get_Const_tarval(c);
923
924 /* check for division by zero */
925 if (tarval_is_null(tv))
926 return irn;
927
928 left = get_Div_left(irn);
929 mode = get_irn_mode(left);
930
931 /* can only handle integer Div's */
932 if (!mode_is_int(mode))
933 return irn;
934
935 block = get_nodes_block(irn);
936 dbg = get_irn_dbg_info(irn);
937
938 bits = get_mode_size_bits(mode);
939 n = (bits + 7) / 8;
940
941 k = -1;
942 if (mode_is_signed(mode)) {
943 /* for signed divisions, the algorithm works for a / -2^k by negating the result */
944 ntv = tarval_neg(tv);
945 n_flag = 1;
946 k = tv_ld2(ntv, n);
947 }
948
949 if (k < 0) {
950 n_flag = 0;
951 k = tv_ld2(tv, n);
952 }
953
954 if (k > 0) { /* division by 2^k or -2^k */
955 ir_graph *irg = get_irn_irg(irn);
956 if (mode_is_signed(mode)) {
957 ir_node *k_node;
958 ir_node *curr = left;
959
960 /* create the correction code for signed values only if there might be a remainder */
961 if (! get_Div_no_remainder(irn)) {
962 if (k != 1) {
963 k_node = new_r_Const_long(irg, mode_Iu, k - 1);
964 curr = new_rd_Shrs(dbg, block, left, k_node, mode);
965 }
966
967 k_node = new_r_Const_long(irg, mode_Iu, bits - k);
968 curr = new_rd_Shr(dbg, block, curr, k_node, mode);
969 /* curr is now 2^(k-1) in case left < 0
970 * or 0 in case left >= 0
971 *
972 * For an example, where this fixup is necessary consider -3 / 2,
973 * which should compute to -1,
974 * but simply shifting right by one computes -2.
975 */
976
977 curr = new_rd_Add(dbg, block, left, curr, mode);
978 }
979
980 k_node = new_r_Const_long(irg, mode_Iu, k);
981 res = new_rd_Shrs(dbg, block, curr, k_node, mode);
982
983 if (n_flag) { /* negate the result */
984 k_node = new_r_Const(irg, get_mode_null(mode));
985 res = new_rd_Sub(dbg, block, k_node, res, mode);
986 }
987 } else { /* unsigned case */
988 ir_node *k_node;
989
990 k_node = new_r_Const_long(irg, mode_Iu, k);
991 res = new_rd_Shr(dbg, block, left, k_node, mode);
992 }
993 } else if (k != 0) {
994 /* other constant */
995 if (allow_Mulh(params, mode))
996 res = replace_div_by_mulh(irn, tv);
997 } else { /* k == 0 i.e. division by 1 */
998 res = left;
999 }
1000
1001 if (res != irn)
1002 hook_arch_dep_replace_division_by_const(irn);
1003
1004 return res;
1005 }
1006
1007 /* Replace Mods with Shifts and Add/Subs and Mulh. */
arch_dep_replace_mod_by_const(ir_node * irn)1008 ir_node *arch_dep_replace_mod_by_const(ir_node *irn)
1009 {
1010 const ir_settings_arch_dep_t *params = be_get_backend_param()->dep_param;
1011 ir_node *res = irn;
1012
1013 /* If the architecture dependent optimizations were not initialized
1014 or this optimization was not enabled. */
1015 if (params == NULL || (opts & arch_dep_mod_by_const) == 0)
1016 return irn;
1017
1018 if (is_Mod(irn)) {
1019 ir_node *c = get_Mod_right(irn);
1020 ir_node *block, *left;
1021 ir_mode *mode;
1022 ir_tarval *tv, *ntv;
1023 dbg_info *dbg;
1024 int n, bits;
1025 int k;
1026
1027 if (! is_Const(c))
1028 return irn;
1029
1030 tv = get_Const_tarval(c);
1031
1032 /* check for division by zero */
1033 if (tarval_is_null(tv))
1034 return irn;
1035
1036 left = get_Mod_left(irn);
1037 mode = get_irn_mode(left);
1038 block = get_nodes_block(irn);
1039 dbg = get_irn_dbg_info(irn);
1040 bits = get_mode_size_bits(mode);
1041 n = (bits + 7) / 8;
1042
1043 k = -1;
1044 if (mode_is_signed(mode)) {
1045 /* for signed divisions, the algorithm works for a / -2^k by negating the result */
1046 ntv = tarval_neg(tv);
1047 k = tv_ld2(ntv, n);
1048 }
1049
1050 if (k < 0) {
1051 k = tv_ld2(tv, n);
1052 }
1053
1054 /* k == 0 i.e. modulo by 1 */
1055 if (k == 0) {
1056 ir_graph *irg = get_irn_irg(irn);
1057
1058 res = new_r_Const(irg, get_mode_null(mode));
1059 }
1060 else if (k > 0) {
1061 ir_graph *irg = get_irn_irg(irn);
1062 /* division by 2^k or -2^k:
1063 * we use "modulus" here, so x % y == x % -y that's why is no difference between the case 2^k and -2^k
1064 */
1065 if (mode_is_signed(mode)) {
1066 ir_node *k_node;
1067 ir_node *curr = left;
1068
1069 if (k != 1) {
1070 k_node = new_r_Const_long(irg, mode_Iu, k - 1);
1071 curr = new_rd_Shrs(dbg, block, left, k_node, mode);
1072 }
1073
1074 k_node = new_r_Const_long(irg, mode_Iu, bits - k);
1075 curr = new_rd_Shr(dbg, block, curr, k_node, mode);
1076
1077 curr = new_rd_Add(dbg, block, left, curr, mode);
1078
1079 k_node = new_r_Const_long(irg, mode, (-1) << k);
1080 curr = new_rd_And(dbg, block, curr, k_node, mode);
1081
1082 res = new_rd_Sub(dbg, block, left, curr, mode);
1083 } else { /* unsigned case */
1084 ir_node *k_node;
1085
1086 k_node = new_r_Const_long(irg, mode, (1 << k) - 1);
1087 res = new_rd_And(dbg, block, left, k_node, mode);
1088 }
1089 } else {
1090 /* other constant */
1091 if (allow_Mulh(params, mode)) {
1092 res = replace_div_by_mulh(irn, tv);
1093
1094 res = new_rd_Mul(dbg, block, res, c, mode);
1095
1096 /* res = arch_dep_mul_to_shift(res); */
1097
1098 res = new_rd_Sub(dbg, block, left, res, mode);
1099 }
1100 }
1101 }
1102
1103 if (res != irn)
1104 hook_arch_dep_replace_division_by_const(irn);
1105
1106 return res;
1107 }
1108