1 //===- STLExtrasTest.cpp - Unit tests for STL extras ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/ADT/STLExtras.h"
10 #include "gtest/gtest.h"
11 
12 #include <list>
13 #include <vector>
14 
15 using namespace llvm;
16 
17 namespace {
18 
f(rank<0>)19 int f(rank<0>) { return 0; }
f(rank<1>)20 int f(rank<1>) { return 1; }
f(rank<2>)21 int f(rank<2>) { return 2; }
f(rank<4>)22 int f(rank<4>) { return 4; }
23 
TEST(STLExtrasTest,Rank)24 TEST(STLExtrasTest, Rank) {
25   // We shouldn't get ambiguities and should select the overload of the same
26   // rank as the argument.
27   EXPECT_EQ(0, f(rank<0>()));
28   EXPECT_EQ(1, f(rank<1>()));
29   EXPECT_EQ(2, f(rank<2>()));
30 
31   // This overload is missing so we end up back at 2.
32   EXPECT_EQ(2, f(rank<3>()));
33 
34   // But going past 3 should work fine.
35   EXPECT_EQ(4, f(rank<4>()));
36 
37   // And we can even go higher and just fall back to the last overload.
38   EXPECT_EQ(4, f(rank<5>()));
39   EXPECT_EQ(4, f(rank<6>()));
40 }
41 
TEST(STLExtrasTest,EnumerateLValue)42 TEST(STLExtrasTest, EnumerateLValue) {
43   // Test that a simple LValue can be enumerated and gives correct results with
44   // multiple types, including the empty container.
45   std::vector<char> foo = {'a', 'b', 'c'};
46   typedef std::pair<std::size_t, char> CharPairType;
47   std::vector<CharPairType> CharResults;
48 
49   for (auto X : llvm::enumerate(foo)) {
50     CharResults.emplace_back(X.index(), X.value());
51   }
52   ASSERT_EQ(3u, CharResults.size());
53   EXPECT_EQ(CharPairType(0u, 'a'), CharResults[0]);
54   EXPECT_EQ(CharPairType(1u, 'b'), CharResults[1]);
55   EXPECT_EQ(CharPairType(2u, 'c'), CharResults[2]);
56 
57   // Test a const range of a different type.
58   typedef std::pair<std::size_t, int> IntPairType;
59   std::vector<IntPairType> IntResults;
60   const std::vector<int> bar = {1, 2, 3};
61   for (auto X : llvm::enumerate(bar)) {
62     IntResults.emplace_back(X.index(), X.value());
63   }
64   ASSERT_EQ(3u, IntResults.size());
65   EXPECT_EQ(IntPairType(0u, 1), IntResults[0]);
66   EXPECT_EQ(IntPairType(1u, 2), IntResults[1]);
67   EXPECT_EQ(IntPairType(2u, 3), IntResults[2]);
68 
69   // Test an empty range.
70   IntResults.clear();
71   const std::vector<int> baz{};
72   for (auto X : llvm::enumerate(baz)) {
73     IntResults.emplace_back(X.index(), X.value());
74   }
75   EXPECT_TRUE(IntResults.empty());
76 }
77 
TEST(STLExtrasTest,EnumerateModifyLValue)78 TEST(STLExtrasTest, EnumerateModifyLValue) {
79   // Test that you can modify the underlying entries of an lvalue range through
80   // the enumeration iterator.
81   std::vector<char> foo = {'a', 'b', 'c'};
82 
83   for (auto X : llvm::enumerate(foo)) {
84     ++X.value();
85   }
86   EXPECT_EQ('b', foo[0]);
87   EXPECT_EQ('c', foo[1]);
88   EXPECT_EQ('d', foo[2]);
89 }
90 
TEST(STLExtrasTest,EnumerateRValueRef)91 TEST(STLExtrasTest, EnumerateRValueRef) {
92   // Test that an rvalue can be enumerated.
93   typedef std::pair<std::size_t, int> PairType;
94   std::vector<PairType> Results;
95 
96   auto Enumerator = llvm::enumerate(std::vector<int>{1, 2, 3});
97 
98   for (auto X : llvm::enumerate(std::vector<int>{1, 2, 3})) {
99     Results.emplace_back(X.index(), X.value());
100   }
101 
102   ASSERT_EQ(3u, Results.size());
103   EXPECT_EQ(PairType(0u, 1), Results[0]);
104   EXPECT_EQ(PairType(1u, 2), Results[1]);
105   EXPECT_EQ(PairType(2u, 3), Results[2]);
106 }
107 
TEST(STLExtrasTest,EnumerateModifyRValue)108 TEST(STLExtrasTest, EnumerateModifyRValue) {
109   // Test that when enumerating an rvalue, modification still works (even if
110   // this isn't terribly useful, it at least shows that we haven't snuck an
111   // extra const in there somewhere.
112   typedef std::pair<std::size_t, char> PairType;
113   std::vector<PairType> Results;
114 
115   for (auto X : llvm::enumerate(std::vector<char>{'1', '2', '3'})) {
116     ++X.value();
117     Results.emplace_back(X.index(), X.value());
118   }
119 
120   ASSERT_EQ(3u, Results.size());
121   EXPECT_EQ(PairType(0u, '2'), Results[0]);
122   EXPECT_EQ(PairType(1u, '3'), Results[1]);
123   EXPECT_EQ(PairType(2u, '4'), Results[2]);
124 }
125 
126 template <bool B> struct CanMove {};
127 template <> struct CanMove<false> {
128   CanMove(CanMove &&) = delete;
129 
130   CanMove() = default;
131   CanMove(const CanMove &) = default;
132 };
133 
134 template <bool B> struct CanCopy {};
135 template <> struct CanCopy<false> {
136   CanCopy(const CanCopy &) = delete;
137 
138   CanCopy() = default;
139   CanCopy(CanCopy &&) = default;
140 };
141 
142 template <bool Moveable, bool Copyable>
143 struct Range : CanMove<Moveable>, CanCopy<Copyable> {
Range__anon57d5fe040111::Range144   explicit Range(int &C, int &M, int &D) : C(C), M(M), D(D) {}
Range__anon57d5fe040111::Range145   Range(const Range &R) : CanCopy<Copyable>(R), C(R.C), M(R.M), D(R.D) { ++C; }
Range__anon57d5fe040111::Range146   Range(Range &&R) : CanMove<Moveable>(std::move(R)), C(R.C), M(R.M), D(R.D) {
147     ++M;
148   }
~Range__anon57d5fe040111::Range149   ~Range() { ++D; }
150 
151   int &C;
152   int &M;
153   int &D;
154 
begin__anon57d5fe040111::Range155   int *begin() { return nullptr; }
end__anon57d5fe040111::Range156   int *end() { return nullptr; }
157 };
158 
TEST(STLExtrasTest,EnumerateLifetimeSemantics)159 TEST(STLExtrasTest, EnumerateLifetimeSemantics) {
160   // Test that when enumerating lvalues and rvalues, there are no surprise
161   // copies or moves.
162 
163   // With an rvalue, it should not be destroyed until the end of the scope.
164   int Copies = 0;
165   int Moves = 0;
166   int Destructors = 0;
167   {
168     auto E1 = enumerate(Range<true, false>(Copies, Moves, Destructors));
169     // Doesn't compile.  rvalue ranges must be moveable.
170     // auto E2 = enumerate(Range<false, true>(Copies, Moves, Destructors));
171     EXPECT_EQ(0, Copies);
172     EXPECT_EQ(1, Moves);
173     EXPECT_EQ(1, Destructors);
174   }
175   EXPECT_EQ(0, Copies);
176   EXPECT_EQ(1, Moves);
177   EXPECT_EQ(2, Destructors);
178 
179   Copies = Moves = Destructors = 0;
180   // With an lvalue, it should not be destroyed even after the end of the scope.
181   // lvalue ranges need be neither copyable nor moveable.
182   Range<false, false> R(Copies, Moves, Destructors);
183   {
184     auto Enumerator = enumerate(R);
185     (void)Enumerator;
186     EXPECT_EQ(0, Copies);
187     EXPECT_EQ(0, Moves);
188     EXPECT_EQ(0, Destructors);
189   }
190   EXPECT_EQ(0, Copies);
191   EXPECT_EQ(0, Moves);
192   EXPECT_EQ(0, Destructors);
193 }
194 
TEST(STLExtrasTest,ApplyTuple)195 TEST(STLExtrasTest, ApplyTuple) {
196   auto T = std::make_tuple(1, 3, 7);
197   auto U = llvm::apply_tuple(
198       [](int A, int B, int C) { return std::make_tuple(A - B, B - C, C - A); },
199       T);
200 
201   EXPECT_EQ(-2, std::get<0>(U));
202   EXPECT_EQ(-4, std::get<1>(U));
203   EXPECT_EQ(6, std::get<2>(U));
204 
205   auto V = llvm::apply_tuple(
206       [](int A, int B, int C) {
207         return std::make_tuple(std::make_pair(A, char('A' + A)),
208                                std::make_pair(B, char('A' + B)),
209                                std::make_pair(C, char('A' + C)));
210       },
211       T);
212 
213   EXPECT_EQ(std::make_pair(1, 'B'), std::get<0>(V));
214   EXPECT_EQ(std::make_pair(3, 'D'), std::get<1>(V));
215   EXPECT_EQ(std::make_pair(7, 'H'), std::get<2>(V));
216 }
217 
218 class apply_variadic {
apply_one(int X)219   static int apply_one(int X) { return X + 1; }
apply_one(char C)220   static char apply_one(char C) { return C + 1; }
apply_one(StringRef S)221   static StringRef apply_one(StringRef S) { return S.drop_back(); }
222 
223 public:
224   template <typename... Ts>
operator ()(Ts &&...Items)225   auto operator()(Ts &&... Items)
226       -> decltype(std::make_tuple(apply_one(Items)...)) {
227     return std::make_tuple(apply_one(Items)...);
228   }
229 };
230 
TEST(STLExtrasTest,ApplyTupleVariadic)231 TEST(STLExtrasTest, ApplyTupleVariadic) {
232   auto Items = std::make_tuple(1, llvm::StringRef("Test"), 'X');
233   auto Values = apply_tuple(apply_variadic(), Items);
234 
235   EXPECT_EQ(2, std::get<0>(Values));
236   EXPECT_EQ("Tes", std::get<1>(Values));
237   EXPECT_EQ('Y', std::get<2>(Values));
238 }
239 
TEST(STLExtrasTest,CountAdaptor)240 TEST(STLExtrasTest, CountAdaptor) {
241   std::vector<int> v;
242 
243   v.push_back(1);
244   v.push_back(2);
245   v.push_back(1);
246   v.push_back(4);
247   v.push_back(3);
248   v.push_back(2);
249   v.push_back(1);
250 
251   EXPECT_EQ(3, count(v, 1));
252   EXPECT_EQ(2, count(v, 2));
253   EXPECT_EQ(1, count(v, 3));
254   EXPECT_EQ(1, count(v, 4));
255 }
256 
TEST(STLExtrasTest,for_each)257 TEST(STLExtrasTest, for_each) {
258   std::vector<int> v{0, 1, 2, 3, 4};
259   int count = 0;
260 
261   llvm::for_each(v, [&count](int) { ++count; });
262   EXPECT_EQ(5, count);
263 }
264 
TEST(STLExtrasTest,ToVector)265 TEST(STLExtrasTest, ToVector) {
266   std::vector<char> v = {'a', 'b', 'c'};
267   auto Enumerated = to_vector<4>(enumerate(v));
268   ASSERT_EQ(3u, Enumerated.size());
269   for (size_t I = 0; I < v.size(); ++I) {
270     EXPECT_EQ(I, Enumerated[I].index());
271     EXPECT_EQ(v[I], Enumerated[I].value());
272   }
273 }
274 
TEST(STLExtrasTest,ConcatRange)275 TEST(STLExtrasTest, ConcatRange) {
276   std::vector<int> Expected = {1, 2, 3, 4, 5, 6, 7, 8};
277   std::vector<int> Test;
278 
279   std::vector<int> V1234 = {1, 2, 3, 4};
280   std::list<int> L56 = {5, 6};
281   SmallVector<int, 2> SV78 = {7, 8};
282 
283   // Use concat across different sized ranges of different types with different
284   // iterators.
285   for (int &i : concat<int>(V1234, L56, SV78))
286     Test.push_back(i);
287   EXPECT_EQ(Expected, Test);
288 
289   // Use concat between a temporary, an L-value, and an R-value to make sure
290   // complex lifetimes work well.
291   Test.clear();
292   for (int &i : concat<int>(std::vector<int>(V1234), L56, std::move(SV78)))
293     Test.push_back(i);
294   EXPECT_EQ(Expected, Test);
295 }
296 
TEST(STLExtrasTest,PartitionAdaptor)297 TEST(STLExtrasTest, PartitionAdaptor) {
298   std::vector<int> V = {1, 2, 3, 4, 5, 6, 7, 8};
299 
300   auto I = partition(V, [](int i) { return i % 2 == 0; });
301   ASSERT_EQ(V.begin() + 4, I);
302 
303   // Sort the two halves as partition may have messed with the order.
304   llvm::sort(V.begin(), I);
305   llvm::sort(I, V.end());
306 
307   EXPECT_EQ(2, V[0]);
308   EXPECT_EQ(4, V[1]);
309   EXPECT_EQ(6, V[2]);
310   EXPECT_EQ(8, V[3]);
311   EXPECT_EQ(1, V[4]);
312   EXPECT_EQ(3, V[5]);
313   EXPECT_EQ(5, V[6]);
314   EXPECT_EQ(7, V[7]);
315 }
316 
TEST(STLExtrasTest,EraseIf)317 TEST(STLExtrasTest, EraseIf) {
318   std::vector<int> V = {1, 2, 3, 4, 5, 6, 7, 8};
319 
320   erase_if(V, [](int i) { return i % 2 == 0; });
321   EXPECT_EQ(4u, V.size());
322   EXPECT_EQ(1, V[0]);
323   EXPECT_EQ(3, V[1]);
324   EXPECT_EQ(5, V[2]);
325   EXPECT_EQ(7, V[3]);
326 }
327 
328 namespace some_namespace {
329 struct some_struct {
330   std::vector<int> data;
331   std::string swap_val;
332 };
333 
begin(const some_struct & s)334 std::vector<int>::const_iterator begin(const some_struct &s) {
335   return s.data.begin();
336 }
337 
end(const some_struct & s)338 std::vector<int>::const_iterator end(const some_struct &s) {
339   return s.data.end();
340 }
341 
swap(some_struct & lhs,some_struct & rhs)342 void swap(some_struct &lhs, some_struct &rhs) {
343   // make swap visible as non-adl swap would even seem to
344   // work with std::swap which defaults to moving
345   lhs.swap_val = "lhs";
346   rhs.swap_val = "rhs";
347 }
348 } // namespace some_namespace
349 
TEST(STLExtrasTest,ADLTest)350 TEST(STLExtrasTest, ADLTest) {
351   some_namespace::some_struct s{{1, 2, 3, 4, 5}, ""};
352   some_namespace::some_struct s2{{2, 4, 6, 8, 10}, ""};
353 
354   EXPECT_EQ(*adl_begin(s), 1);
355   EXPECT_EQ(*(adl_end(s) - 1), 5);
356 
357   adl_swap(s, s2);
358   EXPECT_EQ(s.swap_val, "lhs");
359   EXPECT_EQ(s2.swap_val, "rhs");
360 
361   int count = 0;
362   llvm::for_each(s, [&count](int) { ++count; });
363   EXPECT_EQ(5, count);
364 }
365 
TEST(STLExtrasTest,EmptyTest)366 TEST(STLExtrasTest, EmptyTest) {
367   std::vector<void*> V;
368   EXPECT_TRUE(llvm::empty(V));
369   V.push_back(nullptr);
370   EXPECT_FALSE(llvm::empty(V));
371 
372   std::initializer_list<int> E = {};
373   std::initializer_list<int> NotE = {7, 13, 42};
374   EXPECT_TRUE(llvm::empty(E));
375   EXPECT_FALSE(llvm::empty(NotE));
376 
377   auto R0 = make_range(V.begin(), V.begin());
378   EXPECT_TRUE(llvm::empty(R0));
379   auto R1 = make_range(V.begin(), V.end());
380   EXPECT_FALSE(llvm::empty(R1));
381 }
382 
TEST(STLExtrasTest,EarlyIncrementTest)383 TEST(STLExtrasTest, EarlyIncrementTest) {
384   std::list<int> L = {1, 2, 3, 4};
385 
386   auto EIR = make_early_inc_range(L);
387 
388   auto I = EIR.begin();
389   auto EI = EIR.end();
390   EXPECT_NE(I, EI);
391 
392   EXPECT_EQ(1, *I);
393 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
394 #ifndef NDEBUG
395   // Repeated dereferences are not allowed.
396   EXPECT_DEATH(*I, "Cannot dereference");
397   // Comparison after dereference is not allowed.
398   EXPECT_DEATH((void)(I == EI), "Cannot compare");
399   EXPECT_DEATH((void)(I != EI), "Cannot compare");
400 #endif
401 #endif
402 
403   ++I;
404   EXPECT_NE(I, EI);
405 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
406 #ifndef NDEBUG
407   // You cannot increment prior to dereference.
408   EXPECT_DEATH(++I, "Cannot increment");
409 #endif
410 #endif
411   EXPECT_EQ(2, *I);
412 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
413 #ifndef NDEBUG
414   // Repeated dereferences are not allowed.
415   EXPECT_DEATH(*I, "Cannot dereference");
416 #endif
417 #endif
418 
419   // Inserting shouldn't break anything. We should be able to keep dereferencing
420   // the currrent iterator and increment. The increment to go to the "next"
421   // iterator from before we inserted.
422   L.insert(std::next(L.begin(), 2), -1);
423   ++I;
424   EXPECT_EQ(3, *I);
425 
426   // Erasing the front including the current doesn't break incrementing.
427   L.erase(L.begin(), std::prev(L.end()));
428   ++I;
429   EXPECT_EQ(4, *I);
430   ++I;
431   EXPECT_EQ(EIR.end(), I);
432 }
433 
TEST(STLExtrasTest,splat)434 TEST(STLExtrasTest, splat) {
435   std::vector<int> V;
436   EXPECT_FALSE(is_splat(V));
437 
438   V.push_back(1);
439   EXPECT_TRUE(is_splat(V));
440 
441   V.push_back(1);
442   V.push_back(1);
443   EXPECT_TRUE(is_splat(V));
444 
445   V.push_back(2);
446   EXPECT_FALSE(is_splat(V));
447 }
448 
TEST(STLExtrasTest,to_address)449 TEST(STLExtrasTest, to_address) {
450   int *V1 = new int;
451   EXPECT_EQ(V1, to_address(V1));
452 
453   // Check fancy pointer overload for unique_ptr
454   std::unique_ptr<int> V2 = make_unique<int>(0);
455   EXPECT_EQ(V2.get(), to_address(V2));
456 
457   V2.reset(V1);
458   EXPECT_EQ(V1, to_address(V2));
459   V2.release();
460 
461   // Check fancy pointer overload for shared_ptr
462   std::shared_ptr<int> V3 = std::make_shared<int>(0);
463   std::shared_ptr<int> V4 = V3;
464   EXPECT_EQ(V3.get(), V4.get());
465   EXPECT_EQ(V3.get(), to_address(V3));
466   EXPECT_EQ(V4.get(), to_address(V4));
467 
468   V3.reset(V1);
469   EXPECT_EQ(V1, to_address(V3));
470 }
471 
TEST(STLExtrasTest,partition_point)472 TEST(STLExtrasTest, partition_point) {
473   std::vector<int> V = {1, 3, 5, 7, 9};
474 
475   // Range version.
476   EXPECT_EQ(V.begin() + 3,
477             partition_point(V, [](unsigned X) { return X < 7; }));
478   EXPECT_EQ(V.begin(), partition_point(V, [](unsigned X) { return X < 1; }));
479   EXPECT_EQ(V.end(), partition_point(V, [](unsigned X) { return X < 50; }));
480 }
481 
482 } // namespace
483