1%feature("docstring") OT::CauchyModel 2"Cauchy spectral model. 3 4Refer to :ref:`parametric_spectral_model`. 5 6Available constructors: 7 CauchyModel(*theta, sigma*) 8 9Parameters 10---------- 11theta : sequence of float 12 Scale coefficients :math:`\theta` of the spectral density function. 13 Vector of size n 14sigma : sequence of float 15 Amplitude coefficients :math:`\sigma` of the spectral density function. 16 Vector of size p 17 18Notes 19----- 20The spectral density function of input dimension **n** and output dimension **p** writes: 21 22.. math:: 23 24 \forall (i,j) \in [0,p-1]^2, S(f)_{i,j} = \Sigma_{i,j} \prod_{k=1}^{n} \frac{\theta_k}{1 + (2\pi \theta_k f)^2} 25 26 27Examples 28-------- 29>>> import openturns as ot 30>>> spectralModel = ot.CauchyModel([3.0, 2.0], [2.0]) 31>>> f = 0.3 32>>> print(spectralModel(f)) 33[[ (0.191364,0) ]] 34>>> f = 10 35>>> print(spectralModel(f)) 36[[ (1.71084e-07,0) ]]" 37 38// --------------------------------------------------------------------- 39 40%define OT_CauchyModel_computeStandardRepresentative_doc 41"Compute the standard representant of the spectral density function. 42 43Parameters 44---------- 45tau : float 46 Frequency value. 47 48Returns 49------- 50rho : Complex 51 Standard representant factor of the spectral density function. 52 53Notes 54----- 55Using definitions in :class:`~openturns.SpectralModel`: the standard representative function writes: 56 57.. math:: 58 59 \forall \vect{f} \in \Rset^n, \rho(\vect{f} \odot \vect{\theta}) = \prod_{k=1}^{n} \frac{1}{1 + (2\pi \theta_k f)^2} 60 61where :math:`(\vect{f} \odot \vect{\theta})_k = \vect{f}_k \vect{\theta}_k`" 62%enddef 63%feature("docstring") OT::CauchyModel::computeStandardRepresentative 64OT_CauchyModel_computeStandardRepresentative_doc 65 66// --------------------------------------------------------------------- 67