1
2
3     ************************************************************************
4     *************** Dalton - An Electronic Structure Program ***************
5     ************************************************************************
6
7    This is output from DALTON release Dalton2019.alpha (2019)
8         ( Web site: http://daltonprogram.org )
9
10   ----------------------------------------------------------------------------
11
12    NOTE:
13
14    Dalton is an experimental code for the evaluation of molecular
15    properties using (MC)SCF, DFT, CI, and CC wave functions.
16    The authors accept no responsibility for the performance of
17    the code or for the correctness of the results.
18
19    The code (in whole or part) is provided under a licence and
20    is not to be reproduced for further distribution without
21    the written permission of the authors or their representatives.
22
23    See the home page "http://daltonprogram.org" for further information.
24
25    If results obtained with this code are published,
26    the appropriate citations would be both of:
27
28       K. Aidas, C. Angeli, K. L. Bak, V. Bakken, R. Bast,
29       L. Boman, O. Christiansen, R. Cimiraglia, S. Coriani,
30       P. Dahle, E. K. Dalskov, U. Ekstroem,
31       T. Enevoldsen, J. J. Eriksen, P. Ettenhuber, B. Fernandez,
32       L. Ferrighi, H. Fliegl, L. Frediani, K. Hald, A. Halkier,
33       C. Haettig, H. Heiberg, T. Helgaker, A. C. Hennum,
34       H. Hettema, E. Hjertenaes, S. Hoest, I.-M. Hoeyvik,
35       M. F. Iozzi, B. Jansik, H. J. Aa. Jensen, D. Jonsson,
36       P. Joergensen, J. Kauczor, S. Kirpekar,
37       T. Kjaergaard, W. Klopper, S. Knecht, R. Kobayashi, H. Koch,
38       J. Kongsted, A. Krapp, K. Kristensen, A. Ligabue,
39       O. B. Lutnaes, J. I. Melo, K. V. Mikkelsen, R. H. Myhre,
40       C. Neiss, C. B. Nielsen, P. Norman, J. Olsen,
41       J. M. H. Olsen, A. Osted, M. J. Packer, F. Pawlowski,
42       T. B. Pedersen, P. F. Provasi, S. Reine, Z. Rinkevicius,
43       T. A. Ruden, K. Ruud, V. Rybkin, P. Salek, C. C. M. Samson,
44       A. Sanchez de Meras, T. Saue, S. P. A. Sauer,
45       B. Schimmelpfennig, K. Sneskov, A. H. Steindal,
46       K. O. Sylvester-Hvid, P. R. Taylor, A. M. Teale,
47       E. I. Tellgren, D. P. Tew, A. J. Thorvaldsen, L. Thoegersen,
48       O. Vahtras, M. A. Watson, D. J. D. Wilson, M. Ziolkowski
49       and H. Agren,
50       "The Dalton quantum chemistry program system",
51       WIREs Comput. Mol. Sci. 2014, 4:269–284 (doi: 10.1002/wcms.1172)
52
53    and
54
55       Dalton, a molecular electronic structure program,
56       Release Dalton2019.alpha (2019), see http://daltonprogram.org
57   ----------------------------------------------------------------------------
58
59    Authors in alphabetical order (major contribution(s) in parenthesis):
60
61  Kestutis Aidas,           Vilnius University,           Lithuania   (QM/MM)
62  Celestino Angeli,         University of Ferrara,        Italy       (NEVPT2)
63  Keld L. Bak,              UNI-C,                        Denmark     (AOSOPPA, non-adiabatic coupling, magnetic properties)
64  Vebjoern Bakken,          University of Oslo,           Norway      (DALTON; geometry optimizer, symmetry detection)
65  Radovan Bast,             UiT The Arctic U. of Norway,  Norway      (DALTON installation and execution frameworks)
66  Pablo Baudin,             University of Valencia,       Spain       (Cholesky excitation energies)
67  Linus Boman,              NTNU,                         Norway      (Cholesky decomposition and subsystems)
68  Ove Christiansen,         Aarhus University,            Denmark     (CC module)
69  Renzo Cimiraglia,         University of Ferrara,        Italy       (NEVPT2)
70  Sonia Coriani,            Technical Univ. of Denmark,   Denmark     (CC module, MCD in RESPONS)
71  Janusz Cukras,            University of Trieste,        Italy       (MChD in RESPONS)
72  Paal Dahle,               University of Oslo,           Norway      (Parallelization)
73  Erik K. Dalskov,          UNI-C,                        Denmark     (SOPPA)
74  Thomas Enevoldsen,        Univ. of Southern Denmark,    Denmark     (SOPPA)
75  Janus J. Eriksen,         Aarhus University,            Denmark     (Polarizable embedding model, TDA)
76  Rasmus Faber,             University of Copenhagen,     Denmark     (Vib.avg. NMR with SOPPA, parallel AO-SOPPA)
77  Tobias Fahleson,          KTH Stockholm,                Sweden      (Damped cubic response)
78  Berta Fernandez,          U. of Santiago de Compostela, Spain       (doublet spin, ESR in RESPONS)
79  Lara Ferrighi,            Aarhus University,            Denmark     (PCM Cubic response)
80  Heike Fliegl,             University of Oslo,           Norway      (CCSD(R12))
81  Luca Frediani,            UiT The Arctic U. of Norway,  Norway      (PCM)
82  Bin Gao,                  UiT The Arctic U. of Norway,  Norway      (Gen1Int library)
83  Christof Haettig,         Ruhr-University Bochum,       Germany     (CC module)
84  Kasper Hald,              Aarhus University,            Denmark     (CC module)
85  Asger Halkier,            Aarhus University,            Denmark     (CC module)
86  Frederik Beyer Hansen,    University of Copenhagen,     Denmark     (Parallel AO-SOPPA)
87  Erik D. Hedegaard,        Univ. of Southern Denmark,    Denmark     (Polarizable embedding model, QM/MM)
88  Hanne Heiberg,            University of Oslo,           Norway      (geometry analysis, selected one-electron integrals)
89  Trygve Helgaker,          University of Oslo,           Norway      (DALTON; ABACUS, ERI, DFT modules, London, and much more)
90  Alf Christian Hennum,     University of Oslo,           Norway      (Parity violation)
91  Hinne Hettema,            University of Auckland,       New Zealand (quadratic response in RESPONS; SIRIUS supersymmetry)
92  Eirik Hjertenaes,         NTNU,                         Norway      (Cholesky decomposition)
93  Pi A. B. Haase,           University of Copenhagen,     Denmark     (Triplet AO-SOPPA)
94  Maria Francesca Iozzi,    University of Oslo,           Norway      (RPA)
95  Christoph Jacob           TU Braunschweig               Germany     (Frozen density embedding model)
96  Brano Jansik              Technical Univ. of Ostrava    Czech Rep.  (DFT cubic response)
97  Hans Joergen Aa. Jensen,  Univ. of Southern Denmark,    Denmark     (DALTON; SIRIUS, RESPONS, ABACUS modules, London, and much more)
98  Dan Jonsson,              UiT The Arctic U. of Norway,  Norway      (cubic response in RESPONS module)
99  Poul Joergensen,          Aarhus University,            Denmark     (RESPONS, ABACUS, and CC modules)
100  Maciej Kaminski,          University of Warsaw,         Poland      (CPPh in RESPONS)
101  Joanna Kauczor,           Linkoeping University,        Sweden      (Complex polarization propagator (CPP) module)
102  Sheela Kirpekar,          Univ. of Southern Denmark,    Denmark     (Mass-velocity & Darwin integrals)
103  Wim Klopper,              KIT Karlsruhe,                Germany     (R12 code in CC, SIRIUS, and ABACUS modules)
104  Stefan Knecht,            ETH Zurich,                   Switzerland (Parallel CI and MCSCF)
105  Rika Kobayashi,           Australian National Univ.,    Australia   (DIIS in CC, London in MCSCF)
106  Henrik Koch,              NTNU,                         Norway      (CC module, Cholesky decomposition)
107  Jacob Kongsted,           Univ. of Southern Denmark,    Denmark     (Polarizable embedding model, QM/MM)
108  Andrea Ligabue,           University of Modena,         Italy       (CTOCD, AOSOPPA)
109  Nanna H. List             Univ. of Southern Denmark,    Denmark     (Polarizable embedding model)
110  Ola B. Lutnaes,           University of Oslo,           Norway      (DFT Hessian)
111  Juan I. Melo,             University of Buenos Aires,   Argentina   (LRESC, Relativistic Effects on NMR Shieldings)
112  Kurt V. Mikkelsen,        University of Copenhagen,     Denmark     (MC-SCRF and QM/MM)
113  Rolf H. Myhre,            NTNU,                         Norway      (Subsystems and CC3)
114  Christian Neiss,          Univ. Erlangen-Nuernberg,     Germany     (CCSD(R12))
115  Christian B. Nielsen,     University of Copenhagen,     Denmark     (QM/MM)
116  Patrick Norman,           KTH Stockholm,                Sweden      (Cubic response and complex frequency response in RESPONS)
117  Jeppe Olsen,              Aarhus University,            Denmark     (SIRIUS CI/density modules)
118  Jogvan Magnus H. Olsen,   Univ. of Southern Denmark,    Denmark     (Polarizable embedding model, QM/MM)
119  Anders Osted,             Copenhagen University,        Denmark     (QM/MM)
120  Martin J. Packer,         University of Sheffield,      UK          (SOPPA)
121  Filip Pawlowski,          Kazimierz Wielki University,  Poland      (CC3)
122  Morten N. Pedersen,       Univ. of Southern Denmark,    Denmark     (Polarizable embedding model)
123  Thomas B. Pedersen,       University of Oslo,           Norway      (Cholesky decomposition)
124  Patricio F. Provasi,      University of Northeastern,   Argentina   (Analysis of coupling constants in localized orbitals)
125  Zilvinas Rinkevicius,     KTH Stockholm,                Sweden      (open-shell DFT, ESR)
126  Elias Rudberg,            KTH Stockholm,                Sweden      (DFT grid and basis info)
127  Torgeir A. Ruden,         University of Oslo,           Norway      (Numerical derivatives in ABACUS)
128  Kenneth Ruud,             UiT The Arctic U. of Norway,  Norway      (DALTON; ABACUS magnetic properties and much more)
129  Pawel Salek,              KTH Stockholm,                Sweden      (DALTON; DFT code)
130  Claire C. M. Samson       University of Karlsruhe       Germany     (Boys localization, r12 integrals in ERI)
131  Alfredo Sanchez de Meras, University of Valencia,       Spain       (CC module, Cholesky decomposition)
132  Trond Saue,               Paul Sabatier University,     France      (direct Fock matrix construction)
133  Stephan P. A. Sauer,      University of Copenhagen,     Denmark     (SOPPA(CCSD), SOPPA prop., AOSOPPA, vibrational g-factors)
134  Andre S. P. Gomes,        CNRS/Universite de Lille,     France      (Frozen density embedding model)
135  Bernd Schimmelpfennig,    Forschungszentrum Karlsruhe,  Germany     (AMFI module)
136  Kristian Sneskov,         Aarhus University,            Denmark     (Polarizable embedding model, QM/MM)
137  Arnfinn H. Steindal,      UiT The Arctic U. of Norway,  Norway      (parallel QM/MM, Polarizable embedding model)
138  Casper Steinmann,         Univ. of Southern Denmark,    Denmark     (QFIT, Polarizable embedding model)
139  K. O. Sylvester-Hvid,     University of Copenhagen,     Denmark     (MC-SCRF)
140  Peter R. Taylor,          VLSCI/Univ. of Melbourne,     Australia   (Symmetry handling ABACUS, integral transformation)
141  Andrew M. Teale,          University of Nottingham,     England     (DFT-AC, DFT-D)
142  David P. Tew,             University of Bristol,        England     (CCSD(R12))
143  Olav Vahtras,             KTH Stockholm,                Sweden      (triplet response, spin-orbit, ESR, TDDFT, open-shell DFT)
144  Lucas Visscher,           Vrije Universiteit Amsterdam, Netherlands (Frozen density embedding model)
145  David J. Wilson,          La Trobe University,          Australia   (DFT Hessian and DFT magnetizabilities)
146  Hans Agren,               KTH Stockholm,                Sweden      (SIRIUS module, RESPONS, MC-SCRF solvation model)
147 --------------------------------------------------------------------------------
148
149     Date and time (Linux)  : Tue Aug  6 15:40:52 2019
150     Host name              : adm-110765.pc.sdu.dk
151
152 * Work memory size             :    64000000 =  488.28 megabytes.
153
154 * Directories for basis set searches:
155   1) /home/hjj/progs/gitDalton_hjaaj-srdft/build_srdft_intelmpi/test/rsp_mc_srPBE_mu_inf_fermi_nosymm
156   2) /home/hjj/progs/gitDalton_hjaaj-srdft/build_srdft_intelmpi/basis
157
158
159Compilation information
160-----------------------
161
162 Who compiled             | hjj
163 Host                     | adm-110765.pc.sdu.dk
164 System                   | Linux-4.15.0-39-generic
165 CMake generator          | Unix Makefiles
166 Processor                | x86_64
167 64-bit integers          | OFF
168 MPI                      | ON
169 Fortran compiler         | /opt/intel/compilers_and_libraries_2019.1.144/linu
170                          | x/mpi/intel64/bin/mpif90
171 Fortran compiler version | GNU Fortran (Ubuntu 8.3.0-6ubuntu1~18.04.1) 8.3.0
172 C compiler               | /opt/intel/compilers_and_libraries_2019.1.144/linu
173                          | x/mpi/intel64/bin/mpicc
174 C compiler version       | gcc (Ubuntu 7.4.0-1ubuntu1~18.04.1) 7.4.0
175 C++ compiler             | /opt/intel/compilers_and_libraries_2019.1.144/linu
176                          | x/mpi/intel64/bin/mpicxx
177 C++ compiler version     | unknown
178 BLAS                     | /opt/intel/compilers_and_libraries_2019.1.144/linu
179                          | x/mkl/lib/intel64/libmkl_gf_lp64.so;/opt/intel/com
180                          | pilers_and_libraries_2019.1.144/linux/mkl/lib/inte
181                          | l64/libmkl_sequential.so;/opt/intel/compilers_and_
182                          | libraries_2019.1.144/linux/mkl/lib/intel64/libmkl_
183                          | core.so;/usr/lib/x86_64-linux-gnu/libpthread.so;/u
184                          | sr/lib/x86_64-linux-gnu/libm.so
185 LAPACK                   | /opt/intel/compilers_and_libraries_2019.1.144/linu
186                          | x/mkl/lib/intel64/libmkl_lapack95_lp64.a;/opt/inte
187                          | l/compilers_and_libraries_2019.1.144/linux/mkl/lib
188                          | /intel64/libmkl_gf_lp64.so
189 Static linking           | OFF
190 Last Git revision        | f8892fe83769bcd863e671505911584565206414
191 Git branch               | hjaaj-srdft
192 Configuration time       | 2019-08-06 15:30:35.442168
193
194 * Sequential calculation.
195
196
197   Content of the .dal input file
198 ----------------------------------
199
200**DALTON INPUT
201.RUN RESPONSE
202.DIRECT
203**INTEGRALS
204.FC
205*TWOINT
206.DOSRINTEGRALS
207.ERF
208 10000
209**WAVE FUNCTIONS
210.HFSRDFT
211.MP2
212.MCSRDFT
213.SRFUN
214 SRXPBEGWS SRCPBEGWS
215*SCF INPUT
216.MAX ERRORVECTORS
217 2
218*OPTIMIZATION
219.DETERMINANTS
220*CONFIGURATION INPUT
221.INACTIVE
222 0
223.ELECTRONS
224 2
225.CAS SPACE
226 2
227.SYMMETRY
228 1
229.SPIN MULTIPLICITY
230 1
231**RESPONSE
232*LINEAR
233.FERMI
234.TRIPLET
235**END OF DALTON INPUT
236
237
238   Content of the .mol file
239 ----------------------------
240
241BASIS
2423-21G
243TOP
244KEK
245Atomtypes=1 Angstrom Nosymmetry
246Charge=1.0 Atoms=2
247H 0.0 0.0 0.0
248H 1.2 0.0 0.0
249
250
251       *******************************************************************
252       *********** Output from DALTON general input processing ***********
253       *******************************************************************
254
255 --------------------------------------------------------------------------------
256   Overall default print level:    0
257   Print level for DALTON.STAT:    1
258
259    AO-direct calculation (in sections where implemented)
260    HERMIT 1- and 2-electron integral sections will be executed
261    "Old" integral transformation used (limited to max 255 basis functions)
262    Wave function sections will be executed (SIRIUS module)
263    Dynamic molecular response properties section will be executed (RESPONSE module)
264 --------------------------------------------------------------------------------
265
266
267   ****************************************************************************
268   *************** Output of molecule and basis set information ***************
269   ****************************************************************************
270
271
272    The two title cards from your ".mol" input:
273    ------------------------------------------------------------------------
274 1: TOP
275 2: KEK
276    ------------------------------------------------------------------------
277
278  Coordinates are entered in Angstrom and converted to atomic units.
279          - Conversion factor : 1 bohr = 0.52917721 A
280
281  Atomic type no.    1
282  --------------------
283  Nuclear charge:   1.00000
284  Number of symmetry independent centers:    2
285  Number of basis sets to read;    2
286  Basis set file used for this atomic type with Z =   1 :
287     "/home/hjj/progs/gitDalton_hjaaj-srdft/build_srdft_intelmpi/basis/3-21G"
288
289  Info about the basis set file: your basis has no documentation.
290  Basis set: 3-21G
291
292
293                         SYMGRP: Point group information
294                         -------------------------------
295
296@    Point group: C1
297
298
299                                 Isotopic Masses
300                                 ---------------
301
302                           H           1.007825
303                           H           1.007825
304
305                       Total mass:     2.015650 amu
306                       Natural abundance:  99.970 %
307
308 Center-of-mass coordinates (a.u.):    1.133836    0.000000    0.000000
309 Center-of-mass coordinates (Angs):    0.600000    0.000000    0.000000
310
311
312  Atoms and basis sets
313  --------------------
314
315  Number of atom types :    1
316  Total number of atoms:    2
317
318  Basis set used is "3-21G" from the basis set library.
319
320  label    atoms   charge   prim   cont     basis
321  ----------------------------------------------------------------------
322  H           2    1.0000     3     2      [3s|2s]
323  ----------------------------------------------------------------------
324  total:      2    2.0000     6     4
325  ----------------------------------------------------------------------
326
327  Threshold for neglecting AO integrals:  1.00D-12
328
329
330  Cartesian Coordinates (a.u.)
331  ----------------------------
332
333  Total number of coordinates:    6
334  H       :     1  x   0.0000000000    2  y   0.0000000000    3  z   0.0000000000
335  H       :     4  x   2.2676713500    5  y   0.0000000000    6  z   0.0000000000
336
337
338   Interatomic separations (in Angstrom):
339   --------------------------------------
340
341            H           H
342            ------      ------
343 H     :    0.000000
344 H     :    1.200000    0.000000
345
346
347  Max    interatomic separation is    1.2000 Angstrom (    2.2677 Bohr)
348  between atoms    2 and    1, "H     " and "H     ".
349
350  Min HX interatomic separation is    1.2000 Angstrom (    2.2677 Bohr)
351
352
353  Bond distances (Angstrom):
354  --------------------------
355
356                  atom 1     atom 2       distance
357                  ------     ------       --------
358
359
360
361
362 Principal moments of inertia (u*A**2) and principal axes
363 --------------------------------------------------------
364
365   IA       0.000000          1.000000    0.000000    0.000000
366   IB       0.725634          0.000000    1.000000    0.000000
367   IC       0.725634          0.000000    0.000000    1.000000
368
369
370 Rotational constants
371 --------------------
372
373@    The molecule is linear.
374
375               B =       696465.44 MHz     (   23.231587 cm-1)
376
377
378@  Nuclear repulsion energy :    0.440981009000 Hartree
379
380
381                     .---------------------------------------.
382                     | Starting in Integral Section (HERMIT) |
383                     `---------------------------------------'
384
385
386
387 ***************************************************************************************
388 ****************** Output from **INTEGRALS input processing (HERMIT) ******************
389 ***************************************************************************************
390
391
392
393    *************************************************************************
394    ****************** Output from HERMIT input processing ******************
395    *************************************************************************
396
397
398 Default print level:        1
399
400 Calculation of one-electron Hamiltonian integrals.
401
402 The following one-electron property integrals are calculated as requested:
403          - overlap integrals
404          - Fermi contact integrals
405            (Dirac delta function integrals)
406
407 Center of mass  (bohr):      1.133835674996      0.000000000000      0.000000000000
408 Operator center (bohr):      0.000000000000      0.000000000000      0.000000000000
409 Gauge origin    (bohr):      0.000000000000      0.000000000000      0.000000000000
410 Dipole origin   (bohr):      0.000000000000      0.000000000000      0.000000000000
411
412 Integrals for all indirect spin-spin coupling and/or shielding tensors are calculated.
413
414
415  Set-up from HR2INP:
416  -------------------
417
418 Print level in TWOINT:    1
419
420 DFT-hybrid : Using a Erf type two-elec. operator
421              with the coupling parameter : **********
422 * Direct calculation of Fock matrices in AO-basis.
423 * Program controlled screening thresholds used for this.
424 * Separate density screening of Coulomb integral batches
425 * Separate density screening of exchange integral batches
426
427
428     ************************************************************************
429     ************************** Output from HERINT **************************
430     ************************************************************************
431
432
433
434                      Nuclear contribution to dipole moments
435                      --------------------------------------
436
437                 au               Debye          C m (/(10**-30)
438
439      x      2.26767135         5.76384528        19.22611836
440      y      0.00000000         0.00000000         0.00000000
441      z      0.00000000         0.00000000         0.00000000
442
443
444  Total CPU  time used in HERMIT:   0.00 seconds
445  Total wall time used in HERMIT:   0.00 seconds
446
447
448                        .----------------------------------.
449                        | End of Integral Section (HERMIT) |
450                        `----------------------------------'
451
452
453
454                   .--------------------------------------------.
455                   | Starting in Wave Function Section (SIRIUS) |
456                   `--------------------------------------------'
457
458
459 CI program in use: SIRIUS-CI
460
461 *** Output from Huckel module :
462
463     Using EWMO model:          T
464     Using EHT  model:          F
465     Number of Huckel orbitals each symmetry:    2
466
467 EWMO - Energy Weighted Maximum Overlap - is a Huckel type method,
468        which normally is better than Extended Huckel Theory.
469 Reference: Linderberg and Ohrn, Propagators in Quantum Chemistry (Wiley, 1973)
470
471 Huckel EWMO eigenvalues for symmetry :  1
472           -0.738080      -0.261920
473
474 SETCI, core memory needed for CI:
475 LCINDX =          38
476 LACIMX =         118
477 LBCIMX =           0
478
479 Number of determinants:             4
480
481 Number of configurations:           4
482
483 Time used in SETCI :      0.02s
484
485 **********************************************************************
486 *SIRIUS* a direct, restricted step, second order MCSCF program       *
487 **********************************************************************
488
489
490     Date and time (Linux)  : Tue Aug  6 15:40:52 2019
491     Host name              : adm-110765.pc.sdu.dk
492
493 Title lines from ".mol" input file:
494     TOP
495     KEK
496
497 Print level on unit LUPRI =   2 is   0
498 Print level on unit LUW4  =   2 is   5
499
500@    MC-SCF optimization.
501
502@    Multi-configurational response calculation.
503@              Type: complete active space calculation (CAS).
504
505@    This is a combination run starting with
506@              a restricted, closed shell HF-srDFT hybrid calculation
507@              an MP2 calculation
508
509 Fock matrices are calculated directly without use of integrals on disk.
510
511 Initial molecular orbitals are obtained according to
512 ".MOSTART EWMO  " input option
513
514     Wave function specification
515     ============================
516@    Wave function type        --- MC-SCF ---
517@    Number of closed shell electrons           0
518@    Number of electrons in active shells       2
519@    Total charge of the molecule               0
520
521@    Spin multiplicity and 2 M_S                1         0
522@    Total number of symmetries                 1 (point group: C1 )
523@    Reference state symmetry                   1 (irrep name : A  )
524
525@    This is a lrWFT-srDFT calculation using the
526@      SRXPBEGWS  short range exchange functional
527@      SRCPBEGWS  short range correlation functional
528
529@    sr-DFT and exact sr-HF exchange weights:    1.000000    0.000000
530
531     Orbital specifications
532     ======================
533@    Abelian symmetry species          All |    1
534@                                          |  A
535                                       --- |  ---
536@    Inactive orbitals                   0 |    0
537@    Active orbitals                     2 |    2
538@    Secondary orbitals                  2 |    2
539@    Total number of orbitals            4 |    4
540@    Number of basis functions           4 |    4
541
542      -- Initial occupation of symmetries is determined from total charge (only one symmetry!)
543      -- Initial occupation of symmetries is :
544@    Occupied SCF orbitals               1 |    1
545
546     Optimization information
547     ========================
548@    Number of determinants                   4
549@    Number of orbital rotations              4
550     ------------------------------------------
551@    Total number of variables                8
552
553     Maximum number of macro iterations      25
554     Maximum number of micro iterations     600
555     Threshold for MCSCF gradient      1.00D-05
556     Number of initial trial vectors          1
557     Number of initial CI iterations          3
558     Number of simultaneous trial vectors     1
559
560@    This calculation converges to the lowest state for the specified symmetry and spin species.
561
562     Maximum number of NEO/NR iterations  24
563
564
565 ***********************************************
566 ***** DIIS acceleration of SCF iterations *****
567 ***********************************************
568
569 C1-DIIS algorithm; max error vectors =    2
570
571 Iter      Total energy        Error norm    Delta(E)  DIIS dim.
572 -----------------------------------------------------------------------------
573
574***  INFO  GETGAB: GABSRXXX not found on AOPROPER. Regenerating.
575** Atom H
576* Grid spacing
577 Value chosen:  0.142
578 AH =    10.894356000000000
579 RADERR =    1.0000000000000000E-013
580* Inner grid point: 2.64923E-05
581* Outer point:
582 Value chosen:     9.278
583 Constant c: 1.73693E-04
584 Number of points:    77
585H     1   18514      77     434
586** Atom H
587* Grid spacing
588 Value chosen:  0.142
589 AH =    10.894356000000000
590 RADERR =    1.0000000000000000E-013
591* Inner grid point: 2.64923E-05
592* Outer point:
593 Value chosen:     9.278
594 Constant c: 1.73693E-04
595 Number of points:    77
596H     1   18514      77     434
597
598   Number of grid points in quadrature:     37028 (100.0%)
599
600
601   Ex-sr + Ec-sr                         -0.0000000012
602 + EJsr = sr Coulomb energy               0.0000000000
603 = Total E(srDFT)                        -0.0000000012
604
605
606 Corrections needed for correct CI energy evaluation:
607 - 0.5 Tr(Vxc-sr Dcore)                   0.0000000012
608 -     Tr(Vxc-sr Dval)                    0.0000000000
609 - 0.5 Tr( (Jsr+HFXFAC*Ksr) Dval )        0.0000000000
610   1  Screening settings (-IFTHRS, JTDIIS, DIFDEN, times)   -5    1    F  1.16D-01  1.16D-01
611@  1    -1.05084927127        1.04826D-01   -1.05D+00    1
612      Virial theorem: -V/T =      2.197506
613@    MULPOP   H      -0.00; H       0.00;
614   1  Level shift: doubly occupied orbital energies shifted by -2.00D-01
615 -----------------------------------------------------------------------------
616
617   Ex-sr + Ec-sr                         -0.0000000012
618 + EJsr = sr Coulomb energy               0.0000000000
619 = Total E(srDFT)                        -0.0000000012
620
621
622 Corrections needed for correct CI energy evaluation:
623 - 0.5 Tr(Vxc-sr Dcore)                   0.0000000011
624 -     Tr(Vxc-sr Dval)                    0.0000000000
625 - 0.5 Tr( (Jsr+HFXFAC*Ksr) Dval )        0.0000000000
626   2  Screening settings (-IFTHRS, JTDIIS, DIFDEN, times)   -7    2    F  1.10D-01  1.11D-01
627@  2    -1.05177824948        2.58699D-02   -9.29D-04    2
628      Virial theorem: -V/T =      2.246110
629@    MULPOP   H      -0.00; H       0.00;
630   2  Level shift: doubly occupied orbital energies shifted by -5.00D-02
631 -----------------------------------------------------------------------------
632
633   Ex-sr + Ec-sr                         -0.0000000012
634 + EJsr = sr Coulomb energy               0.0000000000
635 = Total E(srDFT)                        -0.0000000012
636
637
638 Corrections needed for correct CI energy evaluation:
639 - 0.5 Tr(Vxc-sr Dcore)                   0.0000000011
640 -     Tr(Vxc-sr Dval)                    0.0000000000
641 - 0.5 Tr( (Jsr+HFXFAC*Ksr) Dval )        0.0000000000
642   3  Screening settings (-IFTHRS, JTDIIS, DIFDEN, times)   -7    3    F  1.10D-01  1.10D-01
643@  3    -1.05183845247        7.69328D-04   -6.02D-05    2
644      Virial theorem: -V/T =      2.261700
645@    MULPOP   H      -0.00; H       0.00;
646   3  Level shift: doubly occupied orbital energies shifted by -1.25D-02
647 -----------------------------------------------------------------------------
648
649   Ex-sr + Ec-sr                         -0.0000000012
650 + EJsr = sr Coulomb energy               0.0000000000
651 = Total E(srDFT)                        -0.0000000012
652
653
654 Corrections needed for correct CI energy evaluation:
655 - 0.5 Tr(Vxc-sr Dcore)                   0.0000000011
656 -     Tr(Vxc-sr Dval)                    0.0000000000
657 - 0.5 Tr( (Jsr+HFXFAC*Ksr) Dval )        0.0000000000
658   4  Screening settings (-IFTHRS, JTDIIS, DIFDEN, times)   -8    4    F  1.10D-01  1.10D-01
659@  4    -1.05183850576        5.85182D-06   -5.33D-08    2
660
661@ *** DIIS converged in   4 iterations !
662@     Converged SCF energy, gradient:     -1.051838505761    5.85D-06
663    - total time used in SIRFCK :              0.00 seconds
664
665 --- Writing SIRIFC interface file
666
667 CPU and wall time for SCF :       0.447       0.447
668
669
670 ----- Output from SIRIUS MP2 module -----
671
672 Reference: H.J.Aa.Jensen, P.Jørgensen, H.Ågren, and J.Olsen,
673            J. Chem. Phys. 88, 3834 (1988); 89, 5354 (1988)
674
675 Checking that the closed shell orbitals are canonical Hartree-Fock orbitals
676
677    Number of electrons  :    2
678    Closed shell orbitals:    1
679
680 Generating Fock matrix
681
682   Ex-sr + Ec-sr                         -0.0000000012
683 + EJsr = sr Coulomb energy               0.0000000014
684 = Total E(srDFT)                         0.0000000003
685
686
687 Corrections needed for correct CI energy evaluation:
688 - 0.5 Tr(Vxc-sr Dcore)                   0.0000000011
689 -     Tr(Vxc-sr Dval)                    0.0000000000
690 - 0.5 Tr( (Jsr+HFXFAC*Ksr) Dval )        0.0000000000
691
692 Hartree-Fock electronic energy:          -1.492819513328
693 Hartree-Fock total      energy:          -1.051838504328
694
695 Hartree-Fock orbital energies, symmetry 1 ( A  ),    1 occupied SCF orbitals
696
697        -0.48068209     0.13468727     1.16287687     1.20918645
698
699    E(LUMO) :     0.13468727   (in symmetry 1)
700  - E(HOMO) :    -0.48068209   (in symmetry 1)
701  --------------------------
702    gap     :     0.61536936
703
704---> (Re)generating AOTWOINT
705---> and (re)generating AOSR2INT
706
707
708     ************************************************************************
709     ************************** Output from HERINT **************************
710     ************************************************************************
711
712
713 Threshold for neglecting two-electron integrals:  1.00D-12
714 HERMIT - Number of two-electron integrals written:          55 (100.0% )
715 HERMIT - Megabytes written:                              0.007
716
717
718 Threshold for neglecting two-electron integrals:  1.00D-12
719 HERMIT - Number of two-electron integrals written:          55 (100.0% )
720 HERMIT - Megabytes written:                              0.007
721
722
723 2-el. integral transformation level 5: Total CPU and WALL times (sec)       0.001       0.001
724
725 MP2 move   0.029398 electrons to unoccupied HF orbitals
726
727
728@   Short-range Hartree-Fock total energy        :            -1.0518385043
729@   + MP2 contribution from long-range integrals :            -0.0233222164
730@   = short-range MP2 second order energy        :            -1.0751607207
731
732 *******************************************************
733 MP2-SRDFT natural orbitals: Short-range self-consistent
734 contributions are NOT taken into account.
735 *******************************************************
736
737 Natural orbital occupation numbers, symmetry 1 (irrep A  )
738 Sum =     2.00000000; RHF =     2.00000000; Difference =     0.00000000
739
740         1.97076640     0.02763036     0.00114655     0.00045669
741
742 Time used for MP2 natural orbitals :       0.111 CPU seconds,       0.111 wall seconds.
743
744 CPU and wall time for MP2 :       0.111       0.111
745
746
747        SIRIUS MC-srDFT optimization (SIROPT)
748 ================================================
749
750
751 Fock matrix screening setting for SIRCNO: IFTHRS =    9
752
753
754 ----- Output from SIRIUS CI module (CICTL) -----
755
756
757
758
759 2-el. integral transformation level 0: Total CPU and WALL times (sec)       0.000       0.000
760
761 (CIST1) 4 lowest diagonal elements:
762
763 Element no. Config.no.    Active energy      Total energy
764
765         1 :          1     -1.4925877147     -1.0516067057
766         2 :          2     -1.1219074251     -0.6809264161
767         3 :          3     -1.1219074251     -0.6809264161
768         4 :          4     -0.7170532023     -0.2760721933
769
770
771 Convergence threshold for CI optimization :     0.00000500
772
773
774 The requested root number is now converged.
775
776
777 *** CI converged in  2 iterations.
778
779
780SR 0-el. energy for input .STATE    1
781-------------------------------------
782
783   SR core    Hartree energy   :           0.000000000000
784 - SR valence Hartree energy   :          -0.000000001477
785 + SR Exchange-correlation     :          -0.000000001193
786 - SR Exchange-correlation pot.:           0.000000002306
787
788 = Total eff. SR 0-el. energy  :          -0.000000000364
789
790CI-DFT energy for state no.    1
791-------------------------------------
792
793 SR eff. 1-el. energy          :           0.000000000648
794 SR total Hartree energy       :           0.000000001477
795 SR eff. total DFT energy      :           0.000000000284
796 LR total CI  energy           :          -1.089740492692
797
798 Total CI-DFT energy           :          -1.089740492408
799
800 Decomposition of the auxiliary CI-srDFT energy:
801 ELRCI        :          -1.089740492692
802 EMYDFTAUX    :           0.000000000000
803 ESRDV        :           0.000000000648
804 POTNUC       :           0.440981009000
805
806
807 Auxiliary CI-srDFT energy for root 1:        -1.530721501044
808
809
810@ Final CI energies and residuals in symmetry 1 (irrep A  )
811@    1       -1.089740492407894       2.36D-16
812
813   --- OUTPUT FROM SIRCNO     Keyword = FD+NO
814
815
816   Ex-sr + Ec-sr                         -0.0000000012
817 + EJsr = sr Coulomb energy               0.0000000006
818 = Total E(srDFT)                        -0.0000000006
819
820
821 Corrections needed for correct CI energy evaluation:
822 - 0.5 Tr(Vxc-sr Dcore)                  -0.0000000000
823 -     Tr(Vxc-sr Dval)                    0.0000000024
824 - 0.5 Tr( (Jsr+HFXFAC*Ksr) Dval )       -0.0000000006
825
826 Occupations of CAS natural orbitals:
827
828 Symmetry  1 ( irrep A   in C1  )
829
830   1.910463269   0.089536731
831
832
833 --- MACRO ITERATION  1 ---
834 --------------------------
835
836 2-el. integral transformation level 3: Total CPU and WALL times (sec)       0.000       0.001
837
838 Fock matrix screening setting for this macro iteration: 10^( -9)
839
840   Ex-sr + Ec-sr                         -0.0000000012
841 + EJsr = sr Coulomb energy               0.0000000006
842 = Total E(srDFT)                        -0.0000000006
843
844
845 Corrections needed for correct CI energy evaluation:
846 - 0.5 Tr(Vxc-sr Dcore)                  -0.0000000000
847 -     Tr(Vxc-sr Dval)                    0.0000000024
848 - 0.5 Tr( (Jsr+HFXFAC*Ksr) Dval )       -0.0000000006
849
850 Total MC-srDFT energy    :            -1.089740493334466  (MACRO    1)
851
852 - Nuclear repulsion      :             0.440981009000000
853 - Inactive energy        :             0.000000000000000
854 - Active energy          :            -1.530721502885380
855 - srDFT effective energy :             0.000000000550915
856
857 Norm of total gradient   :             0.049733992108
858 -    of CI gradient      :             0.000000000635
859 -    of orbital gradient :             0.049733992108
860      Virial theorem: -V/T =      2.196450
861@    MULPOP   H      -0.00; H       0.00;
862
863 Residual norm when dim(red L) =   4
864 NEO root     CSF        orbital          total
865    1     0.00000000     0.00000000     0.00000000 converged
866
867 (NEONEX) NEO vector is converged.
868
869   --- OUTPUT FROM SIRCNO     Keyword = FD+NO
870
871
872   Ex-sr + Ec-sr                         -0.0000000012
873 + EJsr = sr Coulomb energy               0.0000000006
874 = Total E(srDFT)                        -0.0000000006
875
876
877 Corrections needed for correct CI energy evaluation:
878 - 0.5 Tr(Vxc-sr Dcore)                  -0.0000000000
879 -     Tr(Vxc-sr Dval)                    0.0000000024
880 - 0.5 Tr( (Jsr+HFXFAC*Ksr) Dval )       -0.0000000006
881
882 Occupations of CAS natural orbitals:
883
884 Symmetry  1 ( irrep A   in C1  )
885
886   1.900486918   0.099513082
887
888
889 --- MACRO ITERATION  2 ---
890 --------------------------
891
892 2-el. integral transformation level 3: Total CPU and WALL times (sec)       0.000       0.000
893
894 Fock matrix screening setting for this macro iteration: 10^( -9)
895
896   Ex-sr + Ec-sr                         -0.0000000012
897 + EJsr = sr Coulomb energy               0.0000000006
898 = Total E(srDFT)                        -0.0000000006
899
900
901 Corrections needed for correct CI energy evaluation:
902 - 0.5 Tr(Vxc-sr Dcore)                  -0.0000000000
903 -     Tr(Vxc-sr Dval)                    0.0000000024
904 - 0.5 Tr( (Jsr+HFXFAC*Ksr) Dval )       -0.0000000006
905
906 Total MC-srDFT energy    :            -1.090241350027877  (MACRO    2)
907
908 - Nuclear repulsion      :             0.440981009000000
909 - Inactive energy        :             0.000000000000000
910 - Active energy          :            -1.531222359564297
911 - srDFT effective energy :             0.000000000536420
912
913 Norm of total gradient   :             0.002482362750
914 -    of CI gradient      :             0.001977150172
915 -    of orbital gradient :             0.001501000339
916      Virial theorem: -V/T =      2.177357
917@    MULPOP   H      -0.00; H       0.00;
918
919 Residual norm when dim(red L) =   4
920 NEO root     CSF        orbital          total
921    1     0.00000000     0.00000000     0.00000000 converged
922
923 (NEONEX) NEO vector is converged.
924
925   --- OUTPUT FROM SIRCNO     Keyword = FD+NO
926
927
928   Ex-sr + Ec-sr                         -0.0000000012
929 + EJsr = sr Coulomb energy               0.0000000006
930 = Total E(srDFT)                        -0.0000000006
931
932
933 Corrections needed for correct CI energy evaluation:
934 - 0.5 Tr(Vxc-sr Dcore)                  -0.0000000000
935 -     Tr(Vxc-sr Dval)                    0.0000000024
936 - 0.5 Tr( (Jsr+HFXFAC*Ksr) Dval )       -0.0000000006
937
938 Occupations of CAS natural orbitals:
939
940 Symmetry  1 ( irrep A   in C1  )
941
942   1.902249553   0.097750447
943
944
945 --- MACRO ITERATION  3 ---
946 --------------------------
947
948 2-el. integral transformation level 3: Total CPU and WALL times (sec)       0.000       0.000
949
950 Fock matrix screening setting for this macro iteration: 10^( -9)
951
952   Ex-sr + Ec-sr                         -0.0000000012
953 + EJsr = sr Coulomb energy               0.0000000006
954 = Total E(srDFT)                        -0.0000000006
955
956
957 Corrections needed for correct CI energy evaluation:
958 - 0.5 Tr(Vxc-sr Dcore)                  -0.0000000000
959 -     Tr(Vxc-sr Dval)                    0.0000000024
960 - 0.5 Tr( (Jsr+HFXFAC*Ksr) Dval )       -0.0000000006
961
962 Total MC-srDFT energy    :            -1.090247604317479  (MACRO    3)
963
964 - Nuclear repulsion      :             0.440981009000000
965 - Inactive energy        :             0.000000000000000
966 - Active energy          :            -1.531228613855171
967 - srDFT effective energy :             0.000000000537691
968
969 Norm of total gradient   :             0.000030830079
970 -    of CI gradient      :             0.000016104992
971 -    of orbital gradient :             0.000026289219
972      Virial theorem: -V/T =      2.177363
973@    MULPOP   H      -0.00; H       0.00;
974
975 Residual norm when dim(red L) =   4
976 NEO root     CSF        orbital          total
977    1     0.00000000     0.00000000     0.00000000 converged
978
979 (NEONEX) NEO vector is converged.
980
981   --- OUTPUT FROM SIRCNO     Keyword = FD+NO
982
983
984   Ex-sr + Ec-sr                         -0.0000000012
985 + EJsr = sr Coulomb energy               0.0000000006
986 = Total E(srDFT)                        -0.0000000006
987
988
989 Corrections needed for correct CI energy evaluation:
990 - 0.5 Tr(Vxc-sr Dcore)                  -0.0000000000
991 -     Tr(Vxc-sr Dval)                    0.0000000024
992 - 0.5 Tr( (Jsr+HFXFAC*Ksr) Dval )       -0.0000000006
993
994 Occupations of CAS natural orbitals:
995
996 Symmetry  1 ( irrep A   in C1  )
997
998   1.902269455   0.097730545
999
1000
1001 --- MACRO ITERATION  4 ---
1002 --------------------------
1003
1004 2-el. integral transformation level 3: Total CPU and WALL times (sec)       0.000       0.000
1005
1006 Fock matrix screening setting for this macro iteration: 10^( -9)
1007
1008   Ex-sr + Ec-sr                         -0.0000000012
1009 + EJsr = sr Coulomb energy               0.0000000006
1010 = Total E(srDFT)                        -0.0000000006
1011
1012
1013 Corrections needed for correct CI energy evaluation:
1014 - 0.5 Tr(Vxc-sr Dcore)                  -0.0000000000
1015 -     Tr(Vxc-sr Dval)                    0.0000000024
1016 - 0.5 Tr( (Jsr+HFXFAC*Ksr) Dval )       -0.0000000006
1017
1018 Total MC-srDFT energy    :            -1.090247605615059  (MACRO    4)
1019
1020 - Nuclear repulsion      :             0.440981009000000
1021 - Inactive energy        :             0.000000000000000
1022 - Active energy          :            -1.531228615152764
1023 - srDFT effective energy :             0.000000000537705
1024
1025 Norm of total gradient   :             0.000000007467
1026 -    of CI gradient      :             0.000000005571
1027 -    of orbital gradient :             0.000000004972
1028      Virial theorem: -V/T =      2.177357
1029@    MULPOP   H      -0.00; H       0.00;
1030
1031 *** Optimization control: MC-srDFT converged ***
1032     Number of macro iterations used            4
1033     Number of micro iterations used            9
1034     Total number of CPU seconds used         2.40
1035
1036 CPU and wall time for MCSCF :       2.405       2.405
1037
1038
1039                     .----------------------------------------.
1040                     | --- SIRIUS OPTIMIZATION STATISTICS --- |
1041                     `----------------------------------------'
1042
1043
1044
1045     Date and time (Linux)  : Tue Aug  6 15:40:55 2019
1046     Host name              : adm-110765.pc.sdu.dk
1047
1048
1049  ITER ITMIC     EMCSCF           GRDNRM        RATIO      STPLNG
1050 ---------------------------------------------------------------------
1051    1    3     -1.089740493334   0.0497339921  0.000000   0.0550322111
1052    2    3     -1.090241350028   0.0024823627  0.936037   0.0062531815
1053    3    3     -1.090247604317   0.0000308301  1.009318   0.0000964999
1054    4    0     -1.090247605615   0.0000000075  1.000141   0.0000000000
1055
1056
1057  ITER  INDGCM  GCIMAX      GCINRM     INDGOM  GOBMAX      GOBNRM      GRDNRM
1058 ------------------------------------------------------------------------------
1059    1      4   -0.000000    0.000000      2   -0.048073    0.049734    0.049734
1060    2      4   -0.001927    0.001977      3    0.001412    0.001501    0.002482
1061    3      4   -0.000016    0.000016      3    0.000024    0.000026    0.000031
1062    4      4   -0.000000    0.000000      3    0.000000    0.000000    0.000000
1063
1064
1065  ITER ITMIC NCLIN NOLIN   TIMMAC    TIMITR    TIMMIC    TIMLIN    TIMMIC/ITMIC
1066 ------------------------------------------------------------------------------
1067
1068    1     3     1     2      0.69      0.00      0.58      0.47      0.19
1069    2     3     1     2      0.68      0.00      0.57      0.46      0.19
1070    3     3     1     2      0.72      0.00      0.62      0.51      0.21
1071    4     0     0     0      0.11      0.00      0.00      0.00
1072
1073
1074 ITER         EMY                 EACTIV              EMCSCF
1075
1076    1      0.000000000551     -1.530721502885     -1.089740493334
1077    2      0.000000000536     -1.531222359564     -1.090241350028
1078    3      0.000000000538     -1.531228613855     -1.090247604317
1079    4      0.000000000538     -1.531228615153     -1.090247605615
1080
1081
1082 ITER         DEPRED              DEACT               RATIO
1083
1084    1      0.000000000000      0.000000000000      0.000000000000
1085    2     -0.000535082287     -0.000500856693      0.936036766728
1086    3     -0.000006196552     -0.000006254290      1.009317637484
1087    4     -0.000000001297     -0.000000001298      1.000140982179
1088
1089
1090 ITER    BETA           GAMMA             STPLNG              RTRUST
1091
1092    1      0.20000000  1.00000000      0.055032211083      0.700000000000
1093    2      0.20000000  1.00000000      0.006253181545      0.700000000000
1094    3      0.20000000  1.00000000      0.000096499890      0.700000000000
1095    4      0.00000000  0.00000000      0.000000000000      0.700000000000
1096
1097
1098 Reduced L root no.  1
1099 ITER         EVAL              EVEC(1)           EVEC(2)           EVEC(3)
1100 ----------------------------------------------------------------------------
1101    1   -0.000042801398    0.999939434618   -0.010737745785   -0.002351458829
1102    2   -0.000000495723    0.999999217955   -0.000407028878   -0.001181930329
1103    3   -0.000000000104    0.999999999814   -0.000004615640   -0.000018730647
1104    4    0.000000000000    0.000000000000    0.000000000000    0.000000000000
1105
1106
1107                       .-----------------------------------.
1108                       | --- Final results from SIRIUS --- |
1109                       `-----------------------------------'
1110
1111
1112@    Spin multiplicity:           1
1113@    Spatial symmetry:            1 ( irrep  A   in C1  )
1114@    Total charge of molecule:    0
1115@    State number:                1
1116
1117@    Final MC-SRDFT energy:        -1.090247605615
1118@    Nuclear repulsion:             0.440981009000
1119@    Electronic energy:            -1.531228614615
1120
1121@    Final gradient norm:           0.000000007467
1122
1123
1124     Date and time (Linux)  : Tue Aug  6 15:40:55 2019
1125     Host name              : adm-110765.pc.sdu.dk
1126
1127 Occupancies of natural orbitals
1128 -------------------------------
1129
1130 Symmetry 1  ( A  ) -- Total occupation in this symmetry is   2.000000000
1131
1132   1.902269455   0.097730545
1133
1134File label for MO orbitals:   6Aug19   (CNOORB)
1135
1136 (Only coefficients > 0.0100 are printed.)
1137
1138 Molecular orbitals for symmetry species 1  (A  )
1139 ------------------------------------------------
1140
1141    Orbital         1        2        3        4
1142   1 H   :1s     0.2438  -0.4339   0.8269   0.9172
1143   2 H   :1s     0.3947  -0.6184  -1.3045  -0.6749
1144   3 H   :1s     0.2438   0.4339  -0.8269   0.9172
1145   4 H   :1s     0.3947   0.6184   1.3045  -0.6749
1146
1147 Printout of CI-coefficients abs greater than 0.05000 for root  1
1148 *** NOTE: this root is the reference state ***
1149
1150
1151  Printout of coefficients in interval   0.3162E+00 to  0.1000E+01
1152  ==============================================================
1153
1154 Coefficient of determinant         1 is      0.97526136  9.75261364E-01
1155 alpha-string:  1
1156  beta-string:  1
1157
1158
1159  Printout of coefficients in interval   0.1000E+00 to  0.3162E+00
1160  ==============================================================
1161
1162 Coefficient of determinant         4 is     -0.22105491 -2.21054908E-01
1163 alpha-string:     2
1164  beta-string:     2
1165
1166
1167  Printout of coefficients in interval   0.5000E-01 to  0.1000E+00
1168  ==============================================================
1169   ( no coefficients )
1170
1171 Norm of printed part of CI vector ..      1.00000000
1172
1173  Magnitude of CI coefficients
1174  ============================
1175
1176  ( Ranges are relative to norm of vector :  1.00E+00 )
1177
1178  10- 1 to 10- 0         2    0.10000000E+01    0.10000000E+01
1179  Number of coefficients less than 10^-11 times norm is             2
1180
1181  Total CPU  time used in SIRIUS :   2.96 seconds
1182  Total wall time used in SIRIUS :   2.97 seconds
1183
1184
1185     Date and time (Linux)  : Tue Aug  6 15:40:55 2019
1186     Host name              : adm-110765.pc.sdu.dk
1187
1188
1189                     .---------------------------------------.
1190                     | End of Wave Function Section (SIRIUS) |
1191                     `---------------------------------------'
1192
1193
1194
1195                 .------------------------------------------------.
1196                 | Starting in Dynamic Property Section (RESPONS) |
1197                 `------------------------------------------------'
1198
1199
1200 ----------------------------------------------------------------------------------------
1201  RESPONSE  -  an MCSCF, MC-srDFT, DFT, SOPPA and SOPPA-srDFT response property program
1202 ----------------------------------------------------------------------------------------
1203
1204
1205 -------- OUTPUT FROM RESPONSE INPUT PROCESSING --------
1206
1207
1208
1209
1210 Linear Response calculation
1211 ---------------------------
1212
1213 Print level                                    : IPRLR  =   2
1214 Maximum number of iterations                   : MAXITL =  60
1215 Threshold for relative convergence             : THCLR  = 1.000D-03
1216 Maximum iterations in optimal orbital algorithm: MAXITO =   5
1217
1218  1 B-frequencies  0.000000D+00
1219
1220    2 second order properties calculated with symmetry no.    1 and labels:
1221
1222          FC H 001
1223          FC H 002
1224
1225 TRACTL_1: Integral transformation abandoned, the required MO integrals are already available.
1226
1227 2-el. integral transformation level 3: Total CPU and WALL times (sec)       0.000       0.000
1228
1229 Sorting integrals to Dirac format: Total CPU and WALL times (sec)       0.000       0.000
1230
1231
1232 MCSCF energy         :       -1.090247605615059
1233 -- inactive part     :        0.000000000537705
1234 --   active part     :       -1.531228615152764
1235 -- nuclear repulsion :        0.440981009000000
1236
1237
1238                      *************************************
1239                      *** MC-srDFT response calculation ***
1240                      *************************************
1241
1242 ----------------------------------------------------------------
1243 ----- Linear response calculation
1244 ----- Symmetry of excitation/property operator(s)    1  ( A  )
1245 ----------------------------------------------------------------
1246
1247 Number of excitations of this symmetry            0
1248 Number of response properties of this symmetry    2
1249 Number of C6/C8 properties of this symmetry       0
1250
1251
1252 Perturbation symmetry.     KSYMOP:           1
1253 Perturbation spin symmetry.TRPLET:           T
1254 Orbital variables.         KZWOPT:           4
1255 Configuration variables.   KZCONF:           4
1256 Total number of variables. KZVAR :           8
1257
1258
1259 RSPLR -- linear response calculation for symmetry 1  ( A  )
1260 RSPLR -- operator label : FC H 001
1261 RSPLR -- operator spin  :   0
1262 RSPLR -- frequencies    :     0.000000
1263
1264
1265
1266 ---  SOLVING SETS OF LINEAR EQUATIONS FOR LINEAR RESPONSE PROPERTIES ---
1267
1268 Operator symmetry = 1  ( A  ); triplet =   T
1269
1270
1271 ** RSPCTL MICROITERATION NUMBER    1
1272
1273       No.  Residual tot.,    conf., and orb.    Bnorm      Frequency
1274      ----------------------------------------------------------------
1275         1    2.76748D+00  8.60D-16  2.77D+00  1.45D+01    0.00000D+00
1276
1277 ** RSPCTL MICROITERATION NUMBER    2
1278
1279       No.  Residual tot.,    conf., and orb.    Bnorm      Frequency
1280      ----------------------------------------------------------------
1281         1    2.25371D-01  8.31D-16  2.25D-01  1.66D+01    0.00000D+00
1282
1283 ** RSPCTL MICROITERATION NUMBER    3
1284
1285       No.  Residual tot.,    conf., and orb.    Bnorm      Frequency
1286      ----------------------------------------------------------------
1287         1    3.49566D-05  8.31D-16  3.50D-05  1.65D+01    0.00000D+00
1288
1289 *** THE REQUESTED    1 SOLUTION VECTORS CONVERGED
1290
1291 Convergence of RSP solution vectors, threshold = 1.00D-03
1292 ---------------------------------------------------------------
1293 (dimension of paired reduced space:    8)
1294 RSP solution vector no.    1; norm of residual   2.12D-06
1295
1296 *** RSPCTL MICROITERATIONS CONVERGED
1297
1298
1299 RSPLR -- linear response calculation for symmetry 1  ( A  )
1300 RSPLR -- operator label : FC H 002
1301 RSPLR -- operator spin  :   0
1302 RSPLR -- frequencies    :     0.000000
1303
1304
1305
1306 ---  SOLVING SETS OF LINEAR EQUATIONS FOR LINEAR RESPONSE PROPERTIES ---
1307
1308 Operator symmetry = 1  ( A  ); triplet =   T
1309
1310
1311 ** RSPCTL MICROITERATION NUMBER    1
1312
1313       No.  Residual tot.,    conf., and orb.    Bnorm      Frequency
1314      ----------------------------------------------------------------
1315         1    2.76748D+00  7.02D-16  2.77D+00  1.45D+01    0.00000D+00
1316
1317 ** RSPCTL MICROITERATION NUMBER    2
1318
1319       No.  Residual tot.,    conf., and orb.    Bnorm      Frequency
1320      ----------------------------------------------------------------
1321         1    2.25371D-01  6.66D-16  2.25D-01  1.66D+01    0.00000D+00
1322
1323 ** RSPCTL MICROITERATION NUMBER    3
1324
1325       No.  Residual tot.,    conf., and orb.    Bnorm      Frequency
1326      ----------------------------------------------------------------
1327         1    3.49566D-05  9.42D-16  3.50D-05  1.65D+01    0.00000D+00
1328
1329 *** THE REQUESTED    1 SOLUTION VECTORS CONVERGED
1330
1331 Convergence of RSP solution vectors, threshold = 1.00D-03
1332 ---------------------------------------------------------------
1333 (dimension of paired reduced space:    8)
1334 RSP solution vector no.    1; norm of residual   2.12D-06
1335
1336 *** RSPCTL MICROITERATIONS CONVERGED
1337
1338
1339           Final output of second order properties from linear response
1340           ------------------------------------------------------------
1341
1342
1343@ Spin symmetry of operators: triplet
1344
1345 Note that minus the linear response function: - << A; B >>(omega) is printed.
1346 The results are of quadratic accuracy using Sellers formula.
1347
1348@ FREQUENCY INDEPENDENT SECOND ORDER PROPERTIES
1349
1350@ -<< FC H 001 ; FC H 001 >> =  7.140539047242E+01
1351@ -<< FC H 001 ; FC H 002 >> = -4.130157718488E+01
1352@ -<< FC H 002 ; FC H 002 >> =  7.140539047242E+01
1353
1354
1355 Time used in linear response calculation is      1.29 CPU seconds for symmetry 1
1356
1357  Total CPU  time used in RESPONSE:   1.29 seconds
1358  Total wall time used in RESPONSE:   1.30 seconds
1359
1360
1361                   .-------------------------------------------.
1362                   | End of Dynamic Property Section (RESPONS) |
1363                   `-------------------------------------------'
1364
1365  Total CPU  time used in DALTON:   4.27 seconds
1366  Total wall time used in DALTON:   4.27 seconds
1367
1368
1369     Date and time (Linux)  : Tue Aug  6 15:40:56 2019
1370     Host name              : adm-110765.pc.sdu.dk
1371