1 //===- llvm/Type.h - Classes for handling data types ------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the declaration of the Type class.  For more "Type"
11 // stuff, look in DerivedTypes.h.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_IR_TYPE_H
16 #define LLVM_IR_TYPE_H
17 
18 #include "llvm/ADT/APFloat.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/Support/CBindingWrapping.h"
22 #include "llvm/Support/Casting.h"
23 #include "llvm/Support/Compiler.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include <cassert>
26 #include <cstdint>
27 #include <iterator>
28 
29 namespace llvm {
30 
31 template<class GraphType> struct GraphTraits;
32 class IntegerType;
33 class LLVMContext;
34 class PointerType;
35 class raw_ostream;
36 class StringRef;
37 
38 /// The instances of the Type class are immutable: once they are created,
39 /// they are never changed.  Also note that only one instance of a particular
40 /// type is ever created.  Thus seeing if two types are equal is a matter of
41 /// doing a trivial pointer comparison. To enforce that no two equal instances
42 /// are created, Type instances can only be created via static factory methods
43 /// in class Type and in derived classes.  Once allocated, Types are never
44 /// free'd.
45 ///
46 class Type {
47 public:
48   //===--------------------------------------------------------------------===//
49   /// Definitions of all of the base types for the Type system.  Based on this
50   /// value, you can cast to a class defined in DerivedTypes.h.
51   /// Note: If you add an element to this, you need to add an element to the
52   /// Type::getPrimitiveType function, or else things will break!
53   /// Also update LLVMTypeKind and LLVMGetTypeKind () in the C binding.
54   ///
55   enum TypeID {
56     // PrimitiveTypes - make sure LastPrimitiveTyID stays up to date.
57     VoidTyID = 0,    ///<  0: type with no size
58     HalfTyID,        ///<  1: 16-bit floating point type
59     FloatTyID,       ///<  2: 32-bit floating point type
60     DoubleTyID,      ///<  3: 64-bit floating point type
61     X86_FP80TyID,    ///<  4: 80-bit floating point type (X87)
62     FP128TyID,       ///<  5: 128-bit floating point type (112-bit mantissa)
63     PPC_FP128TyID,   ///<  6: 128-bit floating point type (two 64-bits, PowerPC)
64     LabelTyID,       ///<  7: Labels
65     MetadataTyID,    ///<  8: Metadata
66     X86_MMXTyID,     ///<  9: MMX vectors (64 bits, X86 specific)
67     TokenTyID,       ///< 10: Tokens
68 
69     // Derived types... see DerivedTypes.h file.
70     // Make sure FirstDerivedTyID stays up to date!
71     IntegerTyID,     ///< 11: Arbitrary bit width integers
72     FunctionTyID,    ///< 12: Functions
73     StructTyID,      ///< 13: Structures
74     ArrayTyID,       ///< 14: Arrays
75     PointerTyID,     ///< 15: Pointers
76     VectorTyID       ///< 16: SIMD 'packed' format, or other vector type
77   };
78 
79 private:
80   /// This refers to the LLVMContext in which this type was uniqued.
81   LLVMContext &Context;
82 
83   TypeID   ID : 8;            // The current base type of this type.
84   unsigned SubclassData : 24; // Space for subclasses to store data.
85                               // Note that this should be synchronized with
86                               // MAX_INT_BITS value in IntegerType class.
87 
88 protected:
89   friend class LLVMContextImpl;
90 
91   explicit Type(LLVMContext &C, TypeID tid)
92     : Context(C), ID(tid), SubclassData(0) {}
93   ~Type() = default;
94 
95   unsigned getSubclassData() const { return SubclassData; }
96 
97   void setSubclassData(unsigned val) {
98     SubclassData = val;
99     // Ensure we don't have any accidental truncation.
100     assert(getSubclassData() == val && "Subclass data too large for field");
101   }
102 
103   /// Keeps track of how many Type*'s there are in the ContainedTys list.
104   unsigned NumContainedTys = 0;
105 
106   /// A pointer to the array of Types contained by this Type. For example, this
107   /// includes the arguments of a function type, the elements of a structure,
108   /// the pointee of a pointer, the element type of an array, etc. This pointer
109   /// may be 0 for types that don't contain other types (Integer, Double,
110   /// Float).
111   Type * const *ContainedTys = nullptr;
112 
113   static bool isSequentialType(TypeID TyID) {
114     return TyID == ArrayTyID || TyID == VectorTyID;
115   }
116 
117 public:
118   /// Print the current type.
119   /// Omit the type details if \p NoDetails == true.
120   /// E.g., let %st = type { i32, i16 }
121   /// When \p NoDetails is true, we only print %st.
122   /// Put differently, \p NoDetails prints the type as if
123   /// inlined with the operands when printing an instruction.
124   void print(raw_ostream &O, bool IsForDebug = false,
125              bool NoDetails = false) const;
126 
127   void dump() const;
128 
129   /// Return the LLVMContext in which this type was uniqued.
130   LLVMContext &getContext() const { return Context; }
131 
132   //===--------------------------------------------------------------------===//
133   // Accessors for working with types.
134   //
135 
136   /// Return the type id for the type. This will return one of the TypeID enum
137   /// elements defined above.
138   TypeID getTypeID() const { return ID; }
139 
140   /// Return true if this is 'void'.
141   bool isVoidTy() const { return getTypeID() == VoidTyID; }
142 
143   /// Return true if this is 'half', a 16-bit IEEE fp type.
144   bool isHalfTy() const { return getTypeID() == HalfTyID; }
145 
146   /// Return true if this is 'float', a 32-bit IEEE fp type.
147   bool isFloatTy() const { return getTypeID() == FloatTyID; }
148 
149   /// Return true if this is 'double', a 64-bit IEEE fp type.
150   bool isDoubleTy() const { return getTypeID() == DoubleTyID; }
151 
152   /// Return true if this is x86 long double.
153   bool isX86_FP80Ty() const { return getTypeID() == X86_FP80TyID; }
154 
155   /// Return true if this is 'fp128'.
156   bool isFP128Ty() const { return getTypeID() == FP128TyID; }
157 
158   /// Return true if this is powerpc long double.
159   bool isPPC_FP128Ty() const { return getTypeID() == PPC_FP128TyID; }
160 
161   /// Return true if this is one of the six floating-point types
162   bool isFloatingPointTy() const {
163     return getTypeID() == HalfTyID || getTypeID() == FloatTyID ||
164            getTypeID() == DoubleTyID ||
165            getTypeID() == X86_FP80TyID || getTypeID() == FP128TyID ||
166            getTypeID() == PPC_FP128TyID;
167   }
168 
169   const fltSemantics &getFltSemantics() const {
170     switch (getTypeID()) {
171     case HalfTyID: return APFloat::IEEEhalf();
172     case FloatTyID: return APFloat::IEEEsingle();
173     case DoubleTyID: return APFloat::IEEEdouble();
174     case X86_FP80TyID: return APFloat::x87DoubleExtended();
175     case FP128TyID: return APFloat::IEEEquad();
176     case PPC_FP128TyID: return APFloat::PPCDoubleDouble();
177     default: llvm_unreachable("Invalid floating type");
178     }
179   }
180 
181   /// Return true if this is X86 MMX.
182   bool isX86_MMXTy() const { return getTypeID() == X86_MMXTyID; }
183 
184   /// Return true if this is a FP type or a vector of FP.
185   bool isFPOrFPVectorTy() const { return getScalarType()->isFloatingPointTy(); }
186 
187   /// Return true if this is 'label'.
188   bool isLabelTy() const { return getTypeID() == LabelTyID; }
189 
190   /// Return true if this is 'metadata'.
191   bool isMetadataTy() const { return getTypeID() == MetadataTyID; }
192 
193   /// Return true if this is 'token'.
194   bool isTokenTy() const { return getTypeID() == TokenTyID; }
195 
196   /// True if this is an instance of IntegerType.
197   bool isIntegerTy() const { return getTypeID() == IntegerTyID; }
198 
199   /// Return true if this is an IntegerType of the given width.
200   bool isIntegerTy(unsigned Bitwidth) const;
201 
202   /// Return true if this is an integer type or a vector of integer types.
203   bool isIntOrIntVectorTy() const { return getScalarType()->isIntegerTy(); }
204 
205   /// Return true if this is an integer type or a vector of integer types of
206   /// the given width.
207   bool isIntOrIntVectorTy(unsigned BitWidth) const {
208     return getScalarType()->isIntegerTy(BitWidth);
209   }
210 
211   /// Return true if this is an integer type or a pointer type.
212   bool isIntOrPtrTy() const { return isIntegerTy() || isPointerTy(); }
213 
214   /// True if this is an instance of FunctionType.
215   bool isFunctionTy() const { return getTypeID() == FunctionTyID; }
216 
217   /// True if this is an instance of StructType.
218   bool isStructTy() const { return getTypeID() == StructTyID; }
219 
220   /// True if this is an instance of ArrayType.
221   bool isArrayTy() const { return getTypeID() == ArrayTyID; }
222 
223   /// True if this is an instance of PointerType.
224   bool isPointerTy() const { return getTypeID() == PointerTyID; }
225 
226   /// Return true if this is a pointer type or a vector of pointer types.
227   bool isPtrOrPtrVectorTy() const { return getScalarType()->isPointerTy(); }
228 
229   /// True if this is an instance of VectorType.
230   bool isVectorTy() const { return getTypeID() == VectorTyID; }
231 
232   /// Return true if this type could be converted with a lossless BitCast to
233   /// type 'Ty'. For example, i8* to i32*. BitCasts are valid for types of the
234   /// same size only where no re-interpretation of the bits is done.
235   /// Determine if this type could be losslessly bitcast to Ty
236   bool canLosslesslyBitCastTo(Type *Ty) const;
237 
238   /// Return true if this type is empty, that is, it has no elements or all of
239   /// its elements are empty.
240   bool isEmptyTy() const;
241 
242   /// Return true if the type is "first class", meaning it is a valid type for a
243   /// Value.
244   bool isFirstClassType() const {
245     return getTypeID() != FunctionTyID && getTypeID() != VoidTyID;
246   }
247 
248   /// Return true if the type is a valid type for a register in codegen. This
249   /// includes all first-class types except struct and array types.
250   bool isSingleValueType() const {
251     return isFloatingPointTy() || isX86_MMXTy() || isIntegerTy() ||
252            isPointerTy() || isVectorTy();
253   }
254 
255   /// Return true if the type is an aggregate type. This means it is valid as
256   /// the first operand of an insertvalue or extractvalue instruction. This
257   /// includes struct and array types, but does not include vector types.
258   bool isAggregateType() const {
259     return getTypeID() == StructTyID || getTypeID() == ArrayTyID;
260   }
261 
262   /// Return true if it makes sense to take the size of this type. To get the
263   /// actual size for a particular target, it is reasonable to use the
264   /// DataLayout subsystem to do this.
265   bool isSized(SmallPtrSetImpl<Type*> *Visited = nullptr) const {
266     // If it's a primitive, it is always sized.
267     if (getTypeID() == IntegerTyID || isFloatingPointTy() ||
268         getTypeID() == PointerTyID ||
269         getTypeID() == X86_MMXTyID)
270       return true;
271     // If it is not something that can have a size (e.g. a function or label),
272     // it doesn't have a size.
273     if (getTypeID() != StructTyID && getTypeID() != ArrayTyID &&
274         getTypeID() != VectorTyID)
275       return false;
276     // Otherwise we have to try harder to decide.
277     return isSizedDerivedType(Visited);
278   }
279 
280   /// Return the basic size of this type if it is a primitive type. These are
281   /// fixed by LLVM and are not target-dependent.
282   /// This will return zero if the type does not have a size or is not a
283   /// primitive type.
284   ///
285   /// Note that this may not reflect the size of memory allocated for an
286   /// instance of the type or the number of bytes that are written when an
287   /// instance of the type is stored to memory. The DataLayout class provides
288   /// additional query functions to provide this information.
289   ///
290   unsigned getPrimitiveSizeInBits() const LLVM_READONLY;
291 
292   /// If this is a vector type, return the getPrimitiveSizeInBits value for the
293   /// element type. Otherwise return the getPrimitiveSizeInBits value for this
294   /// type.
295   unsigned getScalarSizeInBits() const LLVM_READONLY;
296 
297   /// Return the width of the mantissa of this type. This is only valid on
298   /// floating-point types. If the FP type does not have a stable mantissa (e.g.
299   /// ppc long double), this method returns -1.
300   int getFPMantissaWidth() const;
301 
302   /// If this is a vector type, return the element type, otherwise return
303   /// 'this'.
304   Type *getScalarType() const {
305     if (isVectorTy())
306       return getVectorElementType();
307     return const_cast<Type*>(this);
308   }
309 
310   //===--------------------------------------------------------------------===//
311   // Type Iteration support.
312   //
313   using subtype_iterator = Type * const *;
314 
315   subtype_iterator subtype_begin() const { return ContainedTys; }
316   subtype_iterator subtype_end() const { return &ContainedTys[NumContainedTys];}
317   ArrayRef<Type*> subtypes() const {
318     return makeArrayRef(subtype_begin(), subtype_end());
319   }
320 
321   using subtype_reverse_iterator = std::reverse_iterator<subtype_iterator>;
322 
323   subtype_reverse_iterator subtype_rbegin() const {
324     return subtype_reverse_iterator(subtype_end());
325   }
326   subtype_reverse_iterator subtype_rend() const {
327     return subtype_reverse_iterator(subtype_begin());
328   }
329 
330   /// This method is used to implement the type iterator (defined at the end of
331   /// the file). For derived types, this returns the types 'contained' in the
332   /// derived type.
333   Type *getContainedType(unsigned i) const {
334     assert(i < NumContainedTys && "Index out of range!");
335     return ContainedTys[i];
336   }
337 
338   /// Return the number of types in the derived type.
339   unsigned getNumContainedTypes() const { return NumContainedTys; }
340 
341   //===--------------------------------------------------------------------===//
342   // Helper methods corresponding to subclass methods.  This forces a cast to
343   // the specified subclass and calls its accessor.  "getVectorNumElements" (for
344   // example) is shorthand for cast<VectorType>(Ty)->getNumElements().  This is
345   // only intended to cover the core methods that are frequently used, helper
346   // methods should not be added here.
347 
348   inline unsigned getIntegerBitWidth() const;
349 
350   inline Type *getFunctionParamType(unsigned i) const;
351   inline unsigned getFunctionNumParams() const;
352   inline bool isFunctionVarArg() const;
353 
354   inline StringRef getStructName() const;
355   inline unsigned getStructNumElements() const;
356   inline Type *getStructElementType(unsigned N) const;
357 
358   inline Type *getSequentialElementType() const {
359     assert(isSequentialType(getTypeID()) && "Not a sequential type!");
360     return ContainedTys[0];
361   }
362 
363   inline uint64_t getArrayNumElements() const;
364 
365   Type *getArrayElementType() const {
366     assert(getTypeID() == ArrayTyID);
367     return ContainedTys[0];
368   }
369 
370   inline unsigned getVectorNumElements() const;
371   Type *getVectorElementType() const {
372     assert(getTypeID() == VectorTyID);
373     return ContainedTys[0];
374   }
375 
376   Type *getPointerElementType() const {
377     assert(getTypeID() == PointerTyID);
378     return ContainedTys[0];
379   }
380 
381   /// Get the address space of this pointer or pointer vector type.
382   inline unsigned getPointerAddressSpace() const;
383 
384   //===--------------------------------------------------------------------===//
385   // Static members exported by the Type class itself.  Useful for getting
386   // instances of Type.
387   //
388 
389   /// Return a type based on an identifier.
390   static Type *getPrimitiveType(LLVMContext &C, TypeID IDNumber);
391 
392   //===--------------------------------------------------------------------===//
393   // These are the builtin types that are always available.
394   //
395   static Type *getVoidTy(LLVMContext &C);
396   static Type *getLabelTy(LLVMContext &C);
397   static Type *getHalfTy(LLVMContext &C);
398   static Type *getFloatTy(LLVMContext &C);
399   static Type *getDoubleTy(LLVMContext &C);
400   static Type *getMetadataTy(LLVMContext &C);
401   static Type *getX86_FP80Ty(LLVMContext &C);
402   static Type *getFP128Ty(LLVMContext &C);
403   static Type *getPPC_FP128Ty(LLVMContext &C);
404   static Type *getX86_MMXTy(LLVMContext &C);
405   static Type *getTokenTy(LLVMContext &C);
406   static IntegerType *getIntNTy(LLVMContext &C, unsigned N);
407   static IntegerType *getInt1Ty(LLVMContext &C);
408   static IntegerType *getInt8Ty(LLVMContext &C);
409   static IntegerType *getInt16Ty(LLVMContext &C);
410   static IntegerType *getInt32Ty(LLVMContext &C);
411   static IntegerType *getInt64Ty(LLVMContext &C);
412   static IntegerType *getInt128Ty(LLVMContext &C);
413   template <typename ScalarTy> static Type *getScalarTy(LLVMContext &C) {
414     int noOfBits = sizeof(ScalarTy) * CHAR_BIT;
415     if (std::is_integral<ScalarTy>::value) {
416       return (Type*) Type::getIntNTy(C, noOfBits);
417     } else if (std::is_floating_point<ScalarTy>::value) {
418       switch (noOfBits) {
419       case 32:
420         return Type::getFloatTy(C);
421       case 64:
422         return Type::getDoubleTy(C);
423       }
424     }
425     llvm_unreachable("Unsupported type in Type::getScalarTy");
426   }
427 
428   //===--------------------------------------------------------------------===//
429   // Convenience methods for getting pointer types with one of the above builtin
430   // types as pointee.
431   //
432   static PointerType *getHalfPtrTy(LLVMContext &C, unsigned AS = 0);
433   static PointerType *getFloatPtrTy(LLVMContext &C, unsigned AS = 0);
434   static PointerType *getDoublePtrTy(LLVMContext &C, unsigned AS = 0);
435   static PointerType *getX86_FP80PtrTy(LLVMContext &C, unsigned AS = 0);
436   static PointerType *getFP128PtrTy(LLVMContext &C, unsigned AS = 0);
437   static PointerType *getPPC_FP128PtrTy(LLVMContext &C, unsigned AS = 0);
438   static PointerType *getX86_MMXPtrTy(LLVMContext &C, unsigned AS = 0);
439   static PointerType *getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS = 0);
440   static PointerType *getInt1PtrTy(LLVMContext &C, unsigned AS = 0);
441   static PointerType *getInt8PtrTy(LLVMContext &C, unsigned AS = 0);
442   static PointerType *getInt16PtrTy(LLVMContext &C, unsigned AS = 0);
443   static PointerType *getInt32PtrTy(LLVMContext &C, unsigned AS = 0);
444   static PointerType *getInt64PtrTy(LLVMContext &C, unsigned AS = 0);
445 
446   /// Return a pointer to the current type. This is equivalent to
447   /// PointerType::get(Foo, AddrSpace).
448   PointerType *getPointerTo(unsigned AddrSpace = 0) const;
449 
450 private:
451   /// Derived types like structures and arrays are sized iff all of the members
452   /// of the type are sized as well. Since asking for their size is relatively
453   /// uncommon, move this operation out-of-line.
454   bool isSizedDerivedType(SmallPtrSetImpl<Type*> *Visited = nullptr) const;
455 };
456 
457 // Printing of types.
458 inline raw_ostream &operator<<(raw_ostream &OS, const Type &T) {
459   T.print(OS);
460   return OS;
461 }
462 
463 // allow isa<PointerType>(x) to work without DerivedTypes.h included.
464 template <> struct isa_impl<PointerType, Type> {
465   static inline bool doit(const Type &Ty) {
466     return Ty.getTypeID() == Type::PointerTyID;
467   }
468 };
469 
470 //===----------------------------------------------------------------------===//
471 // Provide specializations of GraphTraits to be able to treat a type as a
472 // graph of sub types.
473 
474 template <> struct GraphTraits<Type *> {
475   using NodeRef = Type *;
476   using ChildIteratorType = Type::subtype_iterator;
477 
478   static NodeRef getEntryNode(Type *T) { return T; }
479   static ChildIteratorType child_begin(NodeRef N) { return N->subtype_begin(); }
480   static ChildIteratorType child_end(NodeRef N) { return N->subtype_end(); }
481 };
482 
483 template <> struct GraphTraits<const Type*> {
484   using NodeRef = const Type *;
485   using ChildIteratorType = Type::subtype_iterator;
486 
487   static NodeRef getEntryNode(NodeRef T) { return T; }
488   static ChildIteratorType child_begin(NodeRef N) { return N->subtype_begin(); }
489   static ChildIteratorType child_end(NodeRef N) { return N->subtype_end(); }
490 };
491 
492 // Create wrappers for C Binding types (see CBindingWrapping.h).
493 DEFINE_ISA_CONVERSION_FUNCTIONS(Type, LLVMTypeRef)
494 
495 /* Specialized opaque type conversions.
496  */
497 inline Type **unwrap(LLVMTypeRef* Tys) {
498   return reinterpret_cast<Type**>(Tys);
499 }
500 
501 inline LLVMTypeRef *wrap(Type **Tys) {
502   return reinterpret_cast<LLVMTypeRef*>(const_cast<Type**>(Tys));
503 }
504 
505 } // end namespace llvm
506 
507 #endif // LLVM_IR_TYPE_H
508