1 /********************************************************************************
2 * ReactPhysics3D physics library, http://www.reactphysics3d.com *
3 * Copyright (c) 2010-2020 Daniel Chappuis *
4 *********************************************************************************
5 * *
6 * This software is provided 'as-is', without any express or implied warranty. *
7 * In no event will the authors be held liable for any damages arising from the *
8 * use of this software. *
9 * *
10 * Permission is granted to anyone to use this software for any purpose, *
11 * including commercial applications, and to alter it and redistribute it *
12 * freely, subject to the following restrictions: *
13 * *
14 * 1. The origin of this software must not be misrepresented; you must not claim *
15 * that you wrote the original software. If you use this software in a *
16 * product, an acknowledgment in the product documentation would be *
17 * appreciated but is not required. *
18 * *
19 * 2. Altered source versions must be plainly marked as such, and must not be *
20 * misrepresented as being the original software. *
21 * *
22 * 3. This notice may not be removed or altered from any source distribution. *
23 * *
24 ********************************************************************************/
25
26 #ifndef REACTPHYSICS3D_FIXED_JOINT_COMPONENTS_H
27 #define REACTPHYSICS3D_FIXED_JOINT_COMPONENTS_H
28
29 // Libraries
30 #include <reactphysics3d/mathematics/Transform.h>
31 #include <reactphysics3d/mathematics/Matrix3x3.h>
32 #include <reactphysics3d/engine/Entity.h>
33 #include <reactphysics3d/components/Components.h>
34 #include <reactphysics3d/containers/Map.h>
35
36 // ReactPhysics3D namespace
37 namespace reactphysics3d {
38
39 // Class declarations
40 class MemoryAllocator;
41 class EntityManager;
42 class FixedJoint;
43 enum class JointType;
44
45 // Class FixedJointComponents
46 /**
47 * This class represent the component of the ECS with data for the FixedJoint.
48 */
49 class FixedJointComponents : public Components {
50
51 private:
52
53 // -------------------- Attributes -------------------- //
54
55 /// Array of joint entities
56 Entity* mJointEntities;
57
58 /// Array of pointers to the joints
59 FixedJoint** mJoints;
60
61 /// Anchor point of body 1 (in local-space coordinates of body 1)
62 Vector3* mLocalAnchorPointBody1;
63
64 /// Anchor point of body 2 (in local-space coordinates of body 2)
65 Vector3* mLocalAnchorPointBody2;
66
67 /// Vector from center of body 2 to anchor point in world-space
68 Vector3* mR1World;
69
70 /// Vector from center of body 2 to anchor point in world-space
71 Vector3* mR2World;
72
73 /// Inertia tensor of body 1 (in world-space coordinates)
74 Matrix3x3* mI1;
75
76 /// Inertia tensor of body 2 (in world-space coordinates)
77 Matrix3x3* mI2;
78
79 /// Accumulated impulse for the 3 translation constraints
80 Vector3* mImpulseTranslation;
81
82 /// Accumulate impulse for the 3 rotation constraints
83 Vector3* mImpulseRotation;
84
85 /// Inverse mass matrix K=JM^-1J^-t of the 3 translation constraints (3x3 matrix)
86 Matrix3x3* mInverseMassMatrixTranslation;
87
88 /// Inverse mass matrix K=JM^-1J^-t of the 3 rotation constraints (3x3 matrix)
89 Matrix3x3* mInverseMassMatrixRotation;
90
91 /// Bias vector for the 3 translation constraints
92 Vector3* mBiasTranslation;
93
94 /// Bias vector for the 3 rotation constraints
95 Vector3* mBiasRotation;
96
97 /// Inverse of the initial orientation difference between the two bodies
98 Quaternion* mInitOrientationDifferenceInv;
99
100 // -------------------- Methods -------------------- //
101
102 /// Allocate memory for a given number of components
103 virtual void allocate(uint32 nbComponentsToAllocate) override;
104
105 /// Destroy a component at a given index
106 virtual void destroyComponent(uint32 index) override;
107
108 /// Move a component from a source to a destination index in the components array
109 virtual void moveComponentToIndex(uint32 srcIndex, uint32 destIndex) override;
110
111 /// Swap two components in the array
112 virtual void swapComponents(uint32 index1, uint32 index2) override;
113
114 public:
115
116 /// Structure for the data of a transform component
117 struct FixedJointComponent {
118
119 /// Constructor
FixedJointComponentFixedJointComponent120 FixedJointComponent() {
121
122 }
123 };
124
125 // -------------------- Methods -------------------- //
126
127 /// Constructor
128 FixedJointComponents(MemoryAllocator& allocator);
129
130 /// Destructor
131 virtual ~FixedJointComponents() override = default;
132
133 /// Add a component
134 void addComponent(Entity jointEntity, bool isSleeping, const FixedJointComponent& component);
135
136 /// Return a pointer to a given joint
137 FixedJoint* getJoint(Entity jointEntity) const;
138
139 /// Set the joint pointer to a given joint
140 void setJoint(Entity jointEntity, FixedJoint* joint) const;
141
142 /// Return the local anchor point of body 1 for a given joint
143 const Vector3& getLocalAnchorPointBody1(Entity jointEntity) const;
144
145 /// Set the local anchor point of body 1 for a given joint
146 void setLocalAnchorPointBody1(Entity jointEntity, const Vector3& localAnchorPointBody1);
147
148 /// Return the local anchor point of body 2 for a given joint
149 const Vector3& getLocalAnchorPointBody2(Entity jointEntity) const;
150
151 /// Set the local anchor point of body 2 for a given joint
152 void setLocalAnchorPointBody2(Entity jointEntity, const Vector3& localAnchoirPointBody2);
153
154 /// Return the vector from center of body 1 to anchor point in world-space
155 const Vector3& getR1World(Entity jointEntity) const;
156
157 /// Set the vector from center of body 1 to anchor point in world-space
158 void setR1World(Entity jointEntity, const Vector3& r1World);
159
160 /// Return the vector from center of body 2 to anchor point in world-space
161 const Vector3& getR2World(Entity jointEntity) const;
162
163 /// Set the vector from center of body 2 to anchor point in world-space
164 void setR2World(Entity jointEntity, const Vector3& r2World);
165
166 /// Return the inertia tensor of body 1 (in world-space coordinates)
167 const Matrix3x3& getI1(Entity jointEntity) const;
168
169 /// Set the inertia tensor of body 1 (in world-space coordinates)
170 void setI1(Entity jointEntity, const Matrix3x3& i1);
171
172 /// Return the inertia tensor of body 2 (in world-space coordinates)
173 const Matrix3x3& getI2(Entity jointEntity) const;
174
175 /// Set the inertia tensor of body 2 (in world-space coordinates)
176 void setI2(Entity jointEntity, const Matrix3x3& i2);
177
178 /// Return the translation impulse
179 Vector3& getImpulseTranslation(Entity jointEntity);
180
181 /// Set the translation impulse
182 void setImpulseTranslation(Entity jointEntity, const Vector3& impulseTranslation);
183
184 /// Return the translation impulse
185 Vector3& getImpulseRotation(Entity jointEntity);
186
187 /// Set the translation impulse
188 void setImpulseRotation(Entity jointEntity, const Vector3& impulseTranslation);
189
190 /// Return the translation inverse mass matrix of the constraint
191 Matrix3x3& getInverseMassMatrixTranslation(Entity jointEntity);
192
193 /// Set the translation inverse mass matrix of the constraint
194 void setInverseMassMatrixTranslation(Entity jointEntity, const Matrix3x3& inverseMassMatrix);
195
196 /// Return the rotation inverse mass matrix of the constraint
197 Matrix3x3& getInverseMassMatrixRotation(Entity jointEntity);
198
199 /// Set the rotation inverse mass matrix of the constraint
200 void setInverseMassMatrixRotation(Entity jointEntity, const Matrix3x3& inverseMassMatrix);
201
202 /// Return the translation bias
203 Vector3& getBiasTranslation(Entity jointEntity);
204
205 /// Set the translation impulse
206 void setBiasTranslation(Entity jointEntity, const Vector3& impulseTranslation);
207
208 /// Return the rotation bias
209 Vector3& getBiasRotation(Entity jointEntity);
210
211 /// Set the rotation impulse
212 void setBiasRotation(Entity jointEntity, const Vector3 &impulseRotation);
213
214 /// Return the initial orientation difference
215 Quaternion& getInitOrientationDifferenceInv(Entity jointEntity);
216
217 /// Set the rotation impulse
218 void setInitOrientationDifferenceInv(Entity jointEntity, const Quaternion& initOrientationDifferenceInv);
219
220 // -------------------- Friendship -------------------- //
221
222 friend class BroadPhaseSystem;
223 friend class SolveFixedJointSystem;
224 };
225
226 // Return a pointer to a given joint
getJoint(Entity jointEntity)227 inline FixedJoint* FixedJointComponents::getJoint(Entity jointEntity) const {
228
229 assert(mMapEntityToComponentIndex.containsKey(jointEntity));
230 return mJoints[mMapEntityToComponentIndex[jointEntity]];
231 }
232
233 // Set the joint pointer to a given joint
setJoint(Entity jointEntity,FixedJoint * joint)234 inline void FixedJointComponents::setJoint(Entity jointEntity, FixedJoint* joint) const {
235
236 assert(mMapEntityToComponentIndex.containsKey(jointEntity));
237 mJoints[mMapEntityToComponentIndex[jointEntity]] = joint;
238 }
239
240 // Return the local anchor point of body 1 for a given joint
getLocalAnchorPointBody1(Entity jointEntity)241 inline const Vector3& FixedJointComponents::getLocalAnchorPointBody1(Entity jointEntity) const {
242
243 assert(mMapEntityToComponentIndex.containsKey(jointEntity));
244 return mLocalAnchorPointBody1[mMapEntityToComponentIndex[jointEntity]];
245 }
246
247 // Set the local anchor point of body 1 for a given joint
setLocalAnchorPointBody1(Entity jointEntity,const Vector3 & localAnchorPointBody1)248 inline void FixedJointComponents::setLocalAnchorPointBody1(Entity jointEntity, const Vector3& localAnchorPointBody1) {
249
250 assert(mMapEntityToComponentIndex.containsKey(jointEntity));
251 mLocalAnchorPointBody1[mMapEntityToComponentIndex[jointEntity]] = localAnchorPointBody1;
252 }
253
254 // Return the local anchor point of body 2 for a given joint
getLocalAnchorPointBody2(Entity jointEntity)255 inline const Vector3& FixedJointComponents::getLocalAnchorPointBody2(Entity jointEntity) const {
256
257 assert(mMapEntityToComponentIndex.containsKey(jointEntity));
258 return mLocalAnchorPointBody2[mMapEntityToComponentIndex[jointEntity]];
259 }
260
261 // Set the local anchor point of body 2 for a given joint
setLocalAnchorPointBody2(Entity jointEntity,const Vector3 & localAnchorPointBody2)262 inline void FixedJointComponents::setLocalAnchorPointBody2(Entity jointEntity, const Vector3& localAnchorPointBody2) {
263
264 assert(mMapEntityToComponentIndex.containsKey(jointEntity));
265 mLocalAnchorPointBody2[mMapEntityToComponentIndex[jointEntity]] = localAnchorPointBody2;
266 }
267
268 // Return the vector from center of body 1 to anchor point in world-space
getR1World(Entity jointEntity)269 inline const Vector3& FixedJointComponents::getR1World(Entity jointEntity) const {
270
271 assert(mMapEntityToComponentIndex.containsKey(jointEntity));
272 return mR1World[mMapEntityToComponentIndex[jointEntity]];
273 }
274
275 // Set the vector from center of body 1 to anchor point in world-space
setR1World(Entity jointEntity,const Vector3 & r1World)276 inline void FixedJointComponents::setR1World(Entity jointEntity, const Vector3& r1World) {
277
278 assert(mMapEntityToComponentIndex.containsKey(jointEntity));
279 mR1World[mMapEntityToComponentIndex[jointEntity]] = r1World;
280 }
281
282 // Return the vector from center of body 2 to anchor point in world-space
getR2World(Entity jointEntity)283 inline const Vector3& FixedJointComponents::getR2World(Entity jointEntity) const {
284
285 assert(mMapEntityToComponentIndex.containsKey(jointEntity));
286 return mR2World[mMapEntityToComponentIndex[jointEntity]];
287 }
288
289 // Set the vector from center of body 2 to anchor point in world-space
setR2World(Entity jointEntity,const Vector3 & r2World)290 inline void FixedJointComponents::setR2World(Entity jointEntity, const Vector3& r2World) {
291
292 assert(mMapEntityToComponentIndex.containsKey(jointEntity));
293 mR2World[mMapEntityToComponentIndex[jointEntity]] = r2World;
294 }
295
296 // Return the inertia tensor of body 1 (in world-space coordinates)
getI1(Entity jointEntity)297 inline const Matrix3x3& FixedJointComponents::getI1(Entity jointEntity) const {
298
299 assert(mMapEntityToComponentIndex.containsKey(jointEntity));
300 return mI1[mMapEntityToComponentIndex[jointEntity]];
301 }
302
303 // Set the inertia tensor of body 1 (in world-space coordinates)
setI1(Entity jointEntity,const Matrix3x3 & i1)304 inline void FixedJointComponents::setI1(Entity jointEntity, const Matrix3x3& i1) {
305
306 assert(mMapEntityToComponentIndex.containsKey(jointEntity));
307 mI1[mMapEntityToComponentIndex[jointEntity]] = i1;
308 }
309
310 // Return the inertia tensor of body 2 (in world-space coordinates)
getI2(Entity jointEntity)311 inline const Matrix3x3& FixedJointComponents::getI2(Entity jointEntity) const {
312
313 assert(mMapEntityToComponentIndex.containsKey(jointEntity));
314 return mI2[mMapEntityToComponentIndex[jointEntity]];
315 }
316
317 // Set the inertia tensor of body 2 (in world-space coordinates)
setI2(Entity jointEntity,const Matrix3x3 & i2)318 inline void FixedJointComponents::setI2(Entity jointEntity, const Matrix3x3& i2) {
319
320 assert(mMapEntityToComponentIndex.containsKey(jointEntity));
321 mI2[mMapEntityToComponentIndex[jointEntity]] = i2;
322 }
323
324 // Return the translation impulse
getImpulseTranslation(Entity jointEntity)325 inline Vector3& FixedJointComponents::getImpulseTranslation(Entity jointEntity) {
326
327 assert(mMapEntityToComponentIndex.containsKey(jointEntity));
328 return mImpulseTranslation[mMapEntityToComponentIndex[jointEntity]];
329 }
330
331 // Set the translation impulse
setImpulseTranslation(Entity jointEntity,const Vector3 & impulseTranslation)332 inline void FixedJointComponents::setImpulseTranslation(Entity jointEntity, const Vector3& impulseTranslation) {
333
334 assert(mMapEntityToComponentIndex.containsKey(jointEntity));
335 mImpulseTranslation[mMapEntityToComponentIndex[jointEntity]] = impulseTranslation;
336 }
337
338 // Return the translation impulse
getImpulseRotation(Entity jointEntity)339 inline Vector3& FixedJointComponents::getImpulseRotation(Entity jointEntity) {
340
341 assert(mMapEntityToComponentIndex.containsKey(jointEntity));
342 return mImpulseRotation[mMapEntityToComponentIndex[jointEntity]];
343 }
344
345 // Set the translation impulse
setImpulseRotation(Entity jointEntity,const Vector3 & impulseTranslation)346 inline void FixedJointComponents::setImpulseRotation(Entity jointEntity, const Vector3& impulseTranslation) {
347
348 assert(mMapEntityToComponentIndex.containsKey(jointEntity));
349 mImpulseRotation[mMapEntityToComponentIndex[jointEntity]] = impulseTranslation;
350 }
351
352 // Return the translation inverse mass matrix of the constraint
getInverseMassMatrixTranslation(Entity jointEntity)353 inline Matrix3x3& FixedJointComponents::getInverseMassMatrixTranslation(Entity jointEntity) {
354
355 assert(mMapEntityToComponentIndex.containsKey(jointEntity));
356 return mInverseMassMatrixTranslation[mMapEntityToComponentIndex[jointEntity]];
357 }
358
359
360 // Set the translation inverse mass matrix of the constraint
setInverseMassMatrixTranslation(Entity jointEntity,const Matrix3x3 & inverseMassMatrix)361 inline void FixedJointComponents::setInverseMassMatrixTranslation(Entity jointEntity, const Matrix3x3& inverseMassMatrix) {
362
363 assert(mMapEntityToComponentIndex.containsKey(jointEntity));
364 mInverseMassMatrixTranslation[mMapEntityToComponentIndex[jointEntity]] = inverseMassMatrix;
365 }
366
367 // Return the rotation inverse mass matrix of the constraint
getInverseMassMatrixRotation(Entity jointEntity)368 inline Matrix3x3& FixedJointComponents::getInverseMassMatrixRotation(Entity jointEntity) {
369
370 assert(mMapEntityToComponentIndex.containsKey(jointEntity));
371 return mInverseMassMatrixRotation[mMapEntityToComponentIndex[jointEntity]];
372 }
373
374 // Set the rotation inverse mass matrix of the constraint
setInverseMassMatrixRotation(Entity jointEntity,const Matrix3x3 & inverseMassMatrix)375 inline void FixedJointComponents::setInverseMassMatrixRotation(Entity jointEntity, const Matrix3x3& inverseMassMatrix) {
376
377 assert(mMapEntityToComponentIndex.containsKey(jointEntity));
378 mInverseMassMatrixRotation[mMapEntityToComponentIndex[jointEntity]] = inverseMassMatrix;
379 }
380
381 // Return the translation bias
getBiasTranslation(Entity jointEntity)382 inline Vector3& FixedJointComponents::getBiasTranslation(Entity jointEntity) {
383
384 assert(mMapEntityToComponentIndex.containsKey(jointEntity));
385 return mBiasTranslation[mMapEntityToComponentIndex[jointEntity]];
386 }
387
388 // Set the translation impulse
setBiasTranslation(Entity jointEntity,const Vector3 & impulseTranslation)389 inline void FixedJointComponents::setBiasTranslation(Entity jointEntity, const Vector3 &impulseTranslation) {
390
391 assert(mMapEntityToComponentIndex.containsKey(jointEntity));
392 mBiasTranslation[mMapEntityToComponentIndex[jointEntity]] = impulseTranslation;
393 }
394
395 // Return the rotation bias
getBiasRotation(Entity jointEntity)396 inline Vector3& FixedJointComponents::getBiasRotation(Entity jointEntity) {
397
398 assert(mMapEntityToComponentIndex.containsKey(jointEntity));
399 return mBiasRotation[mMapEntityToComponentIndex[jointEntity]];
400 }
401
402 // Set the rotation impulse
setBiasRotation(Entity jointEntity,const Vector3 & impulseRotation)403 inline void FixedJointComponents::setBiasRotation(Entity jointEntity, const Vector3& impulseRotation) {
404
405 assert(mMapEntityToComponentIndex.containsKey(jointEntity));
406 mBiasRotation[mMapEntityToComponentIndex[jointEntity]] = impulseRotation;
407 }
408
409 // Return the initial orientation difference
getInitOrientationDifferenceInv(Entity jointEntity)410 inline Quaternion& FixedJointComponents::getInitOrientationDifferenceInv(Entity jointEntity) {
411
412 assert(mMapEntityToComponentIndex.containsKey(jointEntity));
413 return mInitOrientationDifferenceInv[mMapEntityToComponentIndex[jointEntity]];
414 }
415
416 // Set the rotation impulse
setInitOrientationDifferenceInv(Entity jointEntity,const Quaternion & initOrientationDifferenceInv)417 inline void FixedJointComponents::setInitOrientationDifferenceInv(Entity jointEntity, const Quaternion& initOrientationDifferenceInv) {
418
419 assert(mMapEntityToComponentIndex.containsKey(jointEntity));
420 mInitOrientationDifferenceInv[mMapEntityToComponentIndex[jointEntity]] = initOrientationDifferenceInv;
421 }
422
423 }
424
425 #endif
426