1 /********************************************************************************
2 * ReactPhysics3D physics library, http://www.reactphysics3d.com *
3 * Copyright (c) 2010-2020 Daniel Chappuis *
4 *********************************************************************************
5 * *
6 * This software is provided 'as-is', without any express or implied warranty. *
7 * In no event will the authors be held liable for any damages arising from the *
8 * use of this software. *
9 * *
10 * Permission is granted to anyone to use this software for any purpose, *
11 * including commercial applications, and to alter it and redistribute it *
12 * freely, subject to the following restrictions: *
13 * *
14 * 1. The origin of this software must not be misrepresented; you must not claim *
15 * that you wrote the original software. If you use this software in a *
16 * product, an acknowledgment in the product documentation would be *
17 * appreciated but is not required. *
18 * *
19 * 2. Altered source versions must be plainly marked as such, and must not be *
20 * misrepresented as being the original software. *
21 * *
22 * 3. This notice may not be removed or altered from any source distribution. *
23 * *
24 ********************************************************************************/
25
26 // Libraries
27 #include <reactphysics3d/collision/shapes/HeightFieldShape.h>
28 #include <reactphysics3d/collision/RaycastInfo.h>
29 #include <reactphysics3d/utils/Profiler.h>
30
31 using namespace reactphysics3d;
32
33 // Constructor
34 /**
35 * @param nbGridColumns Number of columns in the grid of the height field
36 * @param nbGridRows Number of rows in the grid of the height field
37 * @param minHeight Minimum height value of the height field
38 * @param maxHeight Maximum height value of the height field
39 * @param heightFieldData Pointer to the first height value data (note that values are shared and not copied)
40 * @param dataType Data type for the height values (int, float, double)
41 * @param upAxis Integer representing the up axis direction (0 for x, 1 for y and 2 for z)
42 * @param integerHeightScale Scaling factor used to scale the height values (only when height values type is integer)
43 */
HeightFieldShape(int nbGridColumns,int nbGridRows,decimal minHeight,decimal maxHeight,const void * heightFieldData,HeightDataType dataType,MemoryAllocator & allocator,int upAxis,decimal integerHeightScale,const Vector3 & scaling)44 HeightFieldShape::HeightFieldShape(int nbGridColumns, int nbGridRows, decimal minHeight, decimal maxHeight,
45 const void* heightFieldData, HeightDataType dataType, MemoryAllocator& allocator, int upAxis,
46 decimal integerHeightScale, const Vector3& scaling)
47 : ConcaveShape(CollisionShapeName::HEIGHTFIELD, allocator, scaling), mNbColumns(nbGridColumns), mNbRows(nbGridRows),
48 mWidth(nbGridColumns - 1), mLength(nbGridRows - 1), mMinHeight(minHeight),
49 mMaxHeight(maxHeight), mUpAxis(upAxis), mIntegerHeightScale(integerHeightScale),
50 mHeightDataType(dataType) {
51
52 assert(nbGridColumns >= 2);
53 assert(nbGridRows >= 2);
54 assert(mWidth >= 1);
55 assert(mLength >= 1);
56 assert(minHeight <= maxHeight);
57 assert(upAxis == 0 || upAxis == 1 || upAxis == 2);
58
59 mHeightFieldData = heightFieldData;
60
61 decimal halfHeight = (mMaxHeight - mMinHeight) * decimal(0.5);
62 assert(halfHeight >= 0);
63
64 // Compute the local AABB of the height field
65 if (mUpAxis == 0) {
66 mAABB.setMin(Vector3(-halfHeight, -mWidth * decimal(0.5), -mLength * decimal(0.5)));
67 mAABB.setMax(Vector3(halfHeight, mWidth * decimal(0.5), mLength* decimal(0.5)));
68 }
69 else if (mUpAxis == 1) {
70 mAABB.setMin(Vector3(-mWidth * decimal(0.5), -halfHeight, -mLength * decimal(0.5)));
71 mAABB.setMax(Vector3(mWidth * decimal(0.5), halfHeight, mLength * decimal(0.5)));
72 }
73 else if (mUpAxis == 2) {
74 mAABB.setMin(Vector3(-mWidth * decimal(0.5), -mLength * decimal(0.5), -halfHeight));
75 mAABB.setMax(Vector3(mWidth * decimal(0.5), mLength * decimal(0.5), halfHeight));
76 }
77 }
78
79 // Return the local bounds of the shape in x, y and z directions.
80 // This method is used to compute the AABB of the box
81 /**
82 * @param min The minimum bounds of the shape in local-space coordinates
83 * @param max The maximum bounds of the shape in local-space coordinates
84 */
getLocalBounds(Vector3 & min,Vector3 & max) const85 void HeightFieldShape::getLocalBounds(Vector3& min, Vector3& max) const {
86 min = mAABB.getMin() * mScale;
87 max = mAABB.getMax() * mScale;
88 }
89
90 // Test collision with the triangles of the height field shape. The idea is to use the AABB
91 // of the body when need to test and see against which triangles of the height-field we need
92 // to test for collision. We compute the sub-grid points that are inside the other body's AABB
93 // and then for each rectangle in the sub-grid we generate two triangles that we use to test collision.
computeOverlappingTriangles(const AABB & localAABB,List<Vector3> & triangleVertices,List<Vector3> & triangleVerticesNormals,List<uint> & shapeIds,MemoryAllocator & allocator) const94 void HeightFieldShape::computeOverlappingTriangles(const AABB& localAABB, List<Vector3>& triangleVertices,
95 List<Vector3>& triangleVerticesNormals, List<uint>& shapeIds,
96 MemoryAllocator& allocator) const {
97
98 RP3D_PROFILE("HeightFieldShape::computeOverlappingTriangles()", mProfiler);
99
100 // Compute the non-scaled AABB
101 Vector3 inverseScale(decimal(1.0) / mScale.x, decimal(1.0) / mScale.y, decimal(1.0) / mScale.z);
102 AABB aabb(localAABB.getMin() * inverseScale, localAABB.getMax() * inverseScale);
103
104 // Compute the integer grid coordinates inside the area we need to test for collision
105 int minGridCoords[3];
106 int maxGridCoords[3];
107 computeMinMaxGridCoordinates(minGridCoords, maxGridCoords, aabb);
108
109 // Compute the starting and ending coords of the sub-grid according to the up axis
110 int iMin = 0;
111 int iMax = 0;
112 int jMin = 0;
113 int jMax = 0;
114 switch(mUpAxis) {
115 case 0 : iMin = clamp(minGridCoords[1], 0, mNbColumns - 1);
116 iMax = clamp(maxGridCoords[1], 0, mNbColumns - 1);
117 jMin = clamp(minGridCoords[2], 0, mNbRows - 1);
118 jMax = clamp(maxGridCoords[2], 0, mNbRows - 1);
119 break;
120 case 1 : iMin = clamp(minGridCoords[0], 0, mNbColumns - 1);
121 iMax = clamp(maxGridCoords[0], 0, mNbColumns - 1);
122 jMin = clamp(minGridCoords[2], 0, mNbRows - 1);
123 jMax = clamp(maxGridCoords[2], 0, mNbRows - 1);
124 break;
125 case 2 : iMin = clamp(minGridCoords[0], 0, mNbColumns - 1);
126 iMax = clamp(maxGridCoords[0], 0, mNbColumns - 1);
127 jMin = clamp(minGridCoords[1], 0, mNbRows - 1);
128 jMax = clamp(maxGridCoords[1], 0, mNbRows - 1);
129 break;
130 }
131
132 assert(iMin >= 0 && iMin < mNbColumns);
133 assert(iMax >= 0 && iMax < mNbColumns);
134 assert(jMin >= 0 && jMin < mNbRows);
135 assert(jMax >= 0 && jMax < mNbRows);
136
137 // For each sub-grid points (except the last ones one each dimension)
138 for (int i = iMin; i < iMax; i++) {
139 for (int j = jMin; j < jMax; j++) {
140
141 // Compute the four point of the current quad
142 const Vector3 p1 = getVertexAt(i, j);
143 const Vector3 p2 = getVertexAt(i, j + 1);
144 const Vector3 p3 = getVertexAt(i + 1, j);
145 const Vector3 p4 = getVertexAt(i + 1, j + 1);
146
147 // Generate the first triangle for the current grid rectangle
148 triangleVertices.add(p1);
149 triangleVertices.add(p2);
150 triangleVertices.add(p3);
151
152 // Compute the triangle normal
153 Vector3 triangle1Normal = (p2 - p1).cross(p3 - p1).getUnit();
154
155 // Use the triangle face normal as vertices normals (this is an aproximation. The correct
156 // solution would be to compute all the normals of the neighbor triangles and use their
157 // weighted average (with incident angle as weight) at the vertices. However, this solution
158 // seems too expensive (it requires to compute the normal of all neighbor triangles instead
159 // and compute the angle of incident edges with asin(). Maybe we could also precompute the
160 // vertices normal at the HeightFieldShape constructor but it will require extra memory to
161 // store them.
162 triangleVerticesNormals.add(triangle1Normal);
163 triangleVerticesNormals.add(triangle1Normal);
164 triangleVerticesNormals.add(triangle1Normal);
165
166 // Compute the shape ID
167 shapeIds.add(computeTriangleShapeId(i, j, 0));
168
169 // Generate the second triangle for the current grid rectangle
170 triangleVertices.add(p3);
171 triangleVertices.add(p2);
172 triangleVertices.add(p4);
173
174 // Compute the triangle normal
175 Vector3 triangle2Normal = (p2 - p3).cross(p4 - p3).getUnit();
176
177 // Use the triangle face normal as vertices normals (this is an aproximation. The correct
178 // solution would be to compute all the normals of the neighbor triangles and use their
179 // weighted average (with incident angle as weight) at the vertices. However, this solution
180 // seems too expensive (it requires to compute the normal of all neighbor triangles instead
181 // and compute the angle of incident edges with asin(). Maybe we could also precompute the
182 // vertices normal at the HeightFieldShape constructor but it will require extra memory to
183 // store them.
184 triangleVerticesNormals.add(triangle2Normal);
185 triangleVerticesNormals.add(triangle2Normal);
186 triangleVerticesNormals.add(triangle2Normal);
187
188 // Compute the shape ID
189 shapeIds.add(computeTriangleShapeId(i, j, 1));
190 }
191 }
192 }
193
194 // Compute the min/max grid coords corresponding to the intersection of the AABB of the height field and
195 // the AABB to collide
computeMinMaxGridCoordinates(int * minCoords,int * maxCoords,const AABB & aabbToCollide) const196 void HeightFieldShape::computeMinMaxGridCoordinates(int* minCoords, int* maxCoords, const AABB& aabbToCollide) const {
197
198 // Clamp the min/max coords of the AABB to collide inside the height field AABB
199 Vector3 minPoint = Vector3::max(aabbToCollide.getMin(), mAABB.getMin());
200 minPoint = Vector3::min(minPoint, mAABB.getMax());
201
202 Vector3 maxPoint = Vector3::min(aabbToCollide.getMax(), mAABB.getMax());
203 maxPoint = Vector3::max(maxPoint, mAABB.getMin());
204
205 // Translate the min/max points such that the we compute grid points from [0 ... mNbWidthGridPoints]
206 // and from [0 ... mNbLengthGridPoints] because the AABB coordinates range are [-mWdith/2 ... mWidth/2]
207 // and [-mLength/2 ... mLength/2]
208 const Vector3 translateVec = mAABB.getExtent() * decimal(0.5);
209 minPoint += translateVec;
210 maxPoint += translateVec;
211
212 // Convert the floating min/max coords of the AABB into closest integer
213 // grid values (note that we use the closest grid coordinate that is out
214 // of the AABB)
215 minCoords[0] = computeIntegerGridValue(minPoint.x) - 1;
216 minCoords[1] = computeIntegerGridValue(minPoint.y) - 1;
217 minCoords[2] = computeIntegerGridValue(minPoint.z) - 1;
218
219 maxCoords[0] = computeIntegerGridValue(maxPoint.x) + 1;
220 maxCoords[1] = computeIntegerGridValue(maxPoint.y) + 1;
221 maxCoords[2] = computeIntegerGridValue(maxPoint.z) + 1;
222 }
223
224 // Raycast method with feedback information
225 /// Note that only the first triangle hit by the ray in the mesh will be returned, even if
226 /// the ray hits many triangles.
raycast(const Ray & ray,RaycastInfo & raycastInfo,Collider * collider,MemoryAllocator & allocator) const227 bool HeightFieldShape::raycast(const Ray& ray, RaycastInfo& raycastInfo, Collider* collider, MemoryAllocator& allocator) const {
228
229 // TODO : Implement raycasting without using an AABB for the ray
230 // but using a dynamic AABB tree or octree instead
231
232 RP3D_PROFILE("HeightFieldShape::raycast()", mProfiler);
233
234 // Compute the AABB for the ray
235 const Vector3 rayEnd = ray.point1 + ray.maxFraction * (ray.point2 - ray.point1);
236 const AABB rayAABB(Vector3::min(ray.point1, rayEnd), Vector3::max(ray.point1, rayEnd));
237
238 // Compute the triangles overlapping with the ray AABB
239 List<Vector3> triangleVertices(allocator);
240 List<Vector3> triangleVerticesNormals(allocator);
241 List<uint> shapeIds(allocator);
242 computeOverlappingTriangles(rayAABB, triangleVertices, triangleVerticesNormals, shapeIds, allocator);
243
244 assert(triangleVertices.size() == triangleVerticesNormals.size());
245 assert(shapeIds.size() == triangleVertices.size() / 3);
246 assert(triangleVertices.size() % 3 == 0);
247 assert(triangleVerticesNormals.size() % 3 == 0);
248
249 bool isHit = false;
250 decimal smallestHitFraction = ray.maxFraction;
251
252 // For each overlapping triangle
253 for (uint i=0; i < shapeIds.size(); i++)
254 {
255 // Create a triangle collision shape
256 TriangleShape triangleShape(&(triangleVertices[i * 3]), &(triangleVerticesNormals[i * 3]), shapeIds[i], allocator);
257 triangleShape.setRaycastTestType(getRaycastTestType());
258
259 #ifdef IS_RP3D_PROFILING_ENABLED
260
261
262 // Set the profiler to the triangle shape
263 triangleShape.setProfiler(mProfiler);
264
265 #endif
266
267 // Ray casting test against the collision shape
268 RaycastInfo triangleRaycastInfo;
269 bool isTriangleHit = triangleShape.raycast(ray, triangleRaycastInfo, collider, allocator);
270
271 // If the ray hit the collision shape
272 if (isTriangleHit && triangleRaycastInfo.hitFraction <= smallestHitFraction) {
273
274 assert(triangleRaycastInfo.hitFraction >= decimal(0.0));
275
276 raycastInfo.body = triangleRaycastInfo.body;
277 raycastInfo.collider = triangleRaycastInfo.collider;
278 raycastInfo.hitFraction = triangleRaycastInfo.hitFraction;
279 raycastInfo.worldPoint = triangleRaycastInfo.worldPoint;
280 raycastInfo.worldNormal = triangleRaycastInfo.worldNormal;
281 raycastInfo.meshSubpart = -1;
282 raycastInfo.triangleIndex = -1;
283
284 smallestHitFraction = triangleRaycastInfo.hitFraction;
285 isHit = true;
286 }
287 }
288
289 return isHit;
290 }
291
292 // Return the vertex (local-coordinates) of the height field at a given (x,y) position
getVertexAt(int x,int y) const293 Vector3 HeightFieldShape::getVertexAt(int x, int y) const {
294
295 // Get the height value
296 const decimal height = getHeightAt(x, y);
297
298 // Height values origin
299 const decimal heightOrigin = -(mMaxHeight - mMinHeight) * decimal(0.5) - mMinHeight;
300
301 Vector3 vertex;
302 switch (mUpAxis) {
303 case 0: vertex = Vector3(heightOrigin + height, -mWidth * decimal(0.5) + x, -mLength * decimal(0.5) + y);
304 break;
305 case 1: vertex = Vector3(-mWidth * decimal(0.5) + x, heightOrigin + height, -mLength * decimal(0.5) + y);
306 break;
307 case 2: vertex = Vector3(-mWidth * decimal(0.5) + x, -mLength * decimal(0.5) + y, heightOrigin + height);
308 break;
309 default: assert(false);
310 }
311
312 assert(mAABB.contains(vertex));
313
314 return vertex * mScale;
315 }
316
317 // Return the string representation of the shape
to_string() const318 std::string HeightFieldShape::to_string() const {
319
320 std::stringstream ss;
321
322 ss << "HeightFieldShape{" << std::endl;
323
324 ss << "nbColumns=" << mNbColumns << std::endl;
325 ss << ", nbRows=" << mNbRows << std::endl;
326 ss << ", width=" << mWidth << std::endl;
327 ss << ", length=" << mLength << std::endl;
328 ss << ", minHeight=" << mMinHeight << std::endl;
329 ss << ", maxHeight=" << mMaxHeight << std::endl;
330 ss << ", upAxis=" << mUpAxis << std::endl;
331 ss << ", integerHeightScale=" << mIntegerHeightScale << std::endl;
332 ss << "}";
333
334 return ss.str();
335 }
336