1%feature("docstring") OT::MaximumEntropyOrderStatisticsCopula
2"MaximumEntropyOrderStatisticsCopula copula.
3
4Parameters
5----------
6coll : sequence of :class:`~openturns.Distribution`
7    The margins, with range verifying :math:`a_i \leq a_{i+1}` and :math:`b_i \leq b_{i+1}`.
8
9Notes
10-----
11Its probability density function is defined as:
12
13.. math::
14
15    f_U(u) = \prod\limits_{k=2}^d \frac{\exp\left(-\int_{\partial_{k-1}^{-1}(u_{k-1})}^{\partial_k^{-1}(u_k)} \phi_k(s)\di{s}\right)}{\partial_{k-1}(\partial_k^{-1}(u_k))-u_k} \mathbf{1}_{F_1^{-1}(u_1) \leq \dots \leq F_d^{-1}(u_d)}
16
17    \text{with } \partial_k(t) = F_k(G^{-1}(t)) \text{ and } G(t) = \frac{1}{t} \sum\limits_{k=1}^d F_k(t)
18
19This class is implemented as a :class:`~openturns.SklarCopula` of the underlying :class:`~openturns.MaximumEntropyOrderStatisticsDistribution`. See the documentation of these classes for the numerical details.
20
21Examples
22--------
23Create a distribution:
24
25>>> import openturns as ot
26>>> coll = [ot.Uniform(-1.0, 1.0), ot.LogUniform(1.0, 1.2), ot.Triangular(3.0, 4.0, 5.0)]
27>>> copulaOrderStat = ot.MaximumEntropyOrderStatisticsCopula(coll)
28
29Draw a sample:
30
31>>> sample = copulaOrderStat.getSample(5)"
32
33// ---------------------------------------------------------------------
34
35%feature("docstring") OT::MaximumEntropyOrderStatisticsCopula::getDistributionCollection
36"Accessor to the distribution's margins collection.
37
38Returns
39-------
40coll : sequence of :class:`~openturns.Distribution`
41    The marginals."
42
43// ---------------------------------------------------------------------
44
45%feature("docstring") OT::MaximumEntropyOrderStatisticsCopula::setDistributionCollection
46"Accessor to the distribution's collection.
47
48Parameters
49----------
50coll : sequence of :class:`~openturns.Distribution`
51    The margins."
52
53// ---------------------------------------------------------------------
54
55