1%feature("docstring") OT::MaximumEntropyOrderStatisticsCopula 2"MaximumEntropyOrderStatisticsCopula copula. 3 4Parameters 5---------- 6coll : sequence of :class:`~openturns.Distribution` 7 The margins, with range verifying :math:`a_i \leq a_{i+1}` and :math:`b_i \leq b_{i+1}`. 8 9Notes 10----- 11Its probability density function is defined as: 12 13.. math:: 14 15 f_U(u) = \prod\limits_{k=2}^d \frac{\exp\left(-\int_{\partial_{k-1}^{-1}(u_{k-1})}^{\partial_k^{-1}(u_k)} \phi_k(s)\di{s}\right)}{\partial_{k-1}(\partial_k^{-1}(u_k))-u_k} \mathbf{1}_{F_1^{-1}(u_1) \leq \dots \leq F_d^{-1}(u_d)} 16 17 \text{with } \partial_k(t) = F_k(G^{-1}(t)) \text{ and } G(t) = \frac{1}{t} \sum\limits_{k=1}^d F_k(t) 18 19This class is implemented as a :class:`~openturns.SklarCopula` of the underlying :class:`~openturns.MaximumEntropyOrderStatisticsDistribution`. See the documentation of these classes for the numerical details. 20 21Examples 22-------- 23Create a distribution: 24 25>>> import openturns as ot 26>>> coll = [ot.Uniform(-1.0, 1.0), ot.LogUniform(1.0, 1.2), ot.Triangular(3.0, 4.0, 5.0)] 27>>> copulaOrderStat = ot.MaximumEntropyOrderStatisticsCopula(coll) 28 29Draw a sample: 30 31>>> sample = copulaOrderStat.getSample(5)" 32 33// --------------------------------------------------------------------- 34 35%feature("docstring") OT::MaximumEntropyOrderStatisticsCopula::getDistributionCollection 36"Accessor to the distribution's margins collection. 37 38Returns 39------- 40coll : sequence of :class:`~openturns.Distribution` 41 The marginals." 42 43// --------------------------------------------------------------------- 44 45%feature("docstring") OT::MaximumEntropyOrderStatisticsCopula::setDistributionCollection 46"Accessor to the distribution's collection. 47 48Parameters 49---------- 50coll : sequence of :class:`~openturns.Distribution` 51 The margins." 52 53// --------------------------------------------------------------------- 54 55