xref: /netbsd/external/gpl3/gdb/dist/gdb/sh-tdep.c (revision f72a8c67)
1 /* Target-dependent code for Renesas Super-H, for GDB.
2 
3    Copyright (C) 1993-2020 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 /* Contributed by Steve Chamberlain
21    sac@cygnus.com.  */
22 
23 #include "defs.h"
24 #include "frame.h"
25 #include "frame-base.h"
26 #include "frame-unwind.h"
27 #include "dwarf2/frame.h"
28 #include "symtab.h"
29 #include "gdbtypes.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "value.h"
33 #include "dis-asm.h"
34 #include "inferior.h"
35 #include "arch-utils.h"
36 #include "regcache.h"
37 #include "target-float.h"
38 #include "osabi.h"
39 #include "reggroups.h"
40 #include "regset.h"
41 #include "objfiles.h"
42 
43 #include "sh-tdep.h"
44 
45 #include "elf-bfd.h"
46 #include "solib-svr4.h"
47 
48 /* sh flags */
49 #include "elf/sh.h"
50 #include "dwarf2.h"
51 /* registers numbers shared with the simulator.  */
52 #include "gdb/sim-sh.h"
53 #include <algorithm>
54 
55 /* List of "set sh ..." and "show sh ..." commands.  */
56 static struct cmd_list_element *setshcmdlist = NULL;
57 static struct cmd_list_element *showshcmdlist = NULL;
58 
59 static const char sh_cc_gcc[] = "gcc";
60 static const char sh_cc_renesas[] = "renesas";
61 static const char *const sh_cc_enum[] = {
62   sh_cc_gcc,
63   sh_cc_renesas,
64   NULL
65 };
66 
67 static const char *sh_active_calling_convention = sh_cc_gcc;
68 
69 #define SH_NUM_REGS 67
70 
71 struct sh_frame_cache
72 {
73   /* Base address.  */
74   CORE_ADDR base;
75   LONGEST sp_offset;
76   CORE_ADDR pc;
77 
78   /* Flag showing that a frame has been created in the prologue code.  */
79   int uses_fp;
80 
81   /* Saved registers.  */
82   CORE_ADDR saved_regs[SH_NUM_REGS];
83   CORE_ADDR saved_sp;
84 };
85 
86 static int
sh_is_renesas_calling_convention(struct type * func_type)87 sh_is_renesas_calling_convention (struct type *func_type)
88 {
89   int val = 0;
90 
91   if (func_type)
92     {
93       func_type = check_typedef (func_type);
94 
95       if (func_type->code () == TYPE_CODE_PTR)
96         func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
97 
98       if (func_type->code () == TYPE_CODE_FUNC
99           && TYPE_CALLING_CONVENTION (func_type) == DW_CC_GNU_renesas_sh)
100         val = 1;
101     }
102 
103   if (sh_active_calling_convention == sh_cc_renesas)
104     val = 1;
105 
106   return val;
107 }
108 
109 static const char *
sh_sh_register_name(struct gdbarch * gdbarch,int reg_nr)110 sh_sh_register_name (struct gdbarch *gdbarch, int reg_nr)
111 {
112   static const char *register_names[] = {
113     "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
114     "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
115     "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
116     "", "",
117     "", "", "", "", "", "", "", "",
118     "", "", "", "", "", "", "", "",
119     "", "",
120     "", "", "", "", "", "", "", "",
121     "", "", "", "", "", "", "", "",
122     "", "", "", "", "", "", "", "",
123   };
124   if (reg_nr < 0)
125     return NULL;
126   if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
127     return NULL;
128   return register_names[reg_nr];
129 }
130 
131 static const char *
sh_sh3_register_name(struct gdbarch * gdbarch,int reg_nr)132 sh_sh3_register_name (struct gdbarch *gdbarch, int reg_nr)
133 {
134   static const char *register_names[] = {
135     "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
136     "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
137     "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
138     "", "",
139     "", "", "", "", "", "", "", "",
140     "", "", "", "", "", "", "", "",
141     "ssr", "spc",
142     "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
143     "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1"
144     "", "", "", "", "", "", "", "",
145   };
146   if (reg_nr < 0)
147     return NULL;
148   if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
149     return NULL;
150   return register_names[reg_nr];
151 }
152 
153 static const char *
sh_sh3e_register_name(struct gdbarch * gdbarch,int reg_nr)154 sh_sh3e_register_name (struct gdbarch *gdbarch, int reg_nr)
155 {
156   static const char *register_names[] = {
157     "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
158     "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
159     "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
160     "fpul", "fpscr",
161     "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
162     "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
163     "ssr", "spc",
164     "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
165     "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
166     "", "", "", "", "", "", "", "",
167   };
168   if (reg_nr < 0)
169     return NULL;
170   if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
171     return NULL;
172   return register_names[reg_nr];
173 }
174 
175 static const char *
sh_sh2e_register_name(struct gdbarch * gdbarch,int reg_nr)176 sh_sh2e_register_name (struct gdbarch *gdbarch, int reg_nr)
177 {
178   static const char *register_names[] = {
179     "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
180     "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
181     "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
182     "fpul", "fpscr",
183     "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
184     "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
185     "", "",
186     "", "", "", "", "", "", "", "",
187     "", "", "", "", "", "", "", "",
188     "", "", "", "", "", "", "", "",
189   };
190   if (reg_nr < 0)
191     return NULL;
192   if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
193     return NULL;
194   return register_names[reg_nr];
195 }
196 
197 static const char *
sh_sh2a_register_name(struct gdbarch * gdbarch,int reg_nr)198 sh_sh2a_register_name (struct gdbarch *gdbarch, int reg_nr)
199 {
200   static const char *register_names[] = {
201     /* general registers 0-15 */
202     "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
203     "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
204     /* 16 - 22 */
205     "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
206     /* 23, 24 */
207     "fpul", "fpscr",
208     /* floating point registers 25 - 40 */
209     "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
210     "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
211     /* 41, 42 */
212     "", "",
213     /* 43 - 62.  Banked registers.  The bank number used is determined by
214        the bank register (63).  */
215     "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
216     "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b",
217     "machb", "ivnb", "prb", "gbrb", "maclb",
218     /* 63: register bank number, not a real register but used to
219        communicate the register bank currently get/set.  This register
220        is hidden to the user, who manipulates it using the pseudo
221        register called "bank" (67).  See below.  */
222     "",
223     /* 64 - 66 */
224     "ibcr", "ibnr", "tbr",
225     /* 67: register bank number, the user visible pseudo register.  */
226     "bank",
227     /* double precision (pseudo) 68 - 75 */
228     "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
229   };
230   if (reg_nr < 0)
231     return NULL;
232   if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
233     return NULL;
234   return register_names[reg_nr];
235 }
236 
237 static const char *
sh_sh2a_nofpu_register_name(struct gdbarch * gdbarch,int reg_nr)238 sh_sh2a_nofpu_register_name (struct gdbarch *gdbarch, int reg_nr)
239 {
240   static const char *register_names[] = {
241     /* general registers 0-15 */
242     "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
243     "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
244     /* 16 - 22 */
245     "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
246     /* 23, 24 */
247     "", "",
248     /* floating point registers 25 - 40 */
249     "", "", "", "", "", "", "", "",
250     "", "", "", "", "", "", "", "",
251     /* 41, 42 */
252     "", "",
253     /* 43 - 62.  Banked registers.  The bank number used is determined by
254        the bank register (63).  */
255     "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
256     "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b",
257     "machb", "ivnb", "prb", "gbrb", "maclb",
258     /* 63: register bank number, not a real register but used to
259        communicate the register bank currently get/set.  This register
260        is hidden to the user, who manipulates it using the pseudo
261        register called "bank" (67).  See below.  */
262     "",
263     /* 64 - 66 */
264     "ibcr", "ibnr", "tbr",
265     /* 67: register bank number, the user visible pseudo register.  */
266     "bank",
267     /* double precision (pseudo) 68 - 75 */
268     "", "", "", "", "", "", "", "",
269   };
270   if (reg_nr < 0)
271     return NULL;
272   if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
273     return NULL;
274   return register_names[reg_nr];
275 }
276 
277 static const char *
sh_sh_dsp_register_name(struct gdbarch * gdbarch,int reg_nr)278 sh_sh_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
279 {
280   static const char *register_names[] = {
281     "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
282     "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
283     "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
284     "", "dsr",
285     "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
286     "y0", "y1", "", "", "", "", "", "mod",
287     "", "",
288     "rs", "re", "", "", "", "", "", "",
289     "", "", "", "", "", "", "", "",
290     "", "", "", "", "", "", "", "",
291   };
292   if (reg_nr < 0)
293     return NULL;
294   if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
295     return NULL;
296   return register_names[reg_nr];
297 }
298 
299 static const char *
sh_sh3_dsp_register_name(struct gdbarch * gdbarch,int reg_nr)300 sh_sh3_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
301 {
302   static const char *register_names[] = {
303     "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
304     "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
305     "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
306     "", "dsr",
307     "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
308     "y0", "y1", "", "", "", "", "", "mod",
309     "ssr", "spc",
310     "rs", "re", "", "", "", "", "", "",
311     "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
312     "", "", "", "", "", "", "", "",
313     "", "", "", "", "", "", "", "",
314   };
315   if (reg_nr < 0)
316     return NULL;
317   if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
318     return NULL;
319   return register_names[reg_nr];
320 }
321 
322 static const char *
sh_sh4_register_name(struct gdbarch * gdbarch,int reg_nr)323 sh_sh4_register_name (struct gdbarch *gdbarch, int reg_nr)
324 {
325   static const char *register_names[] = {
326     /* general registers 0-15 */
327     "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
328     "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
329     /* 16 - 22 */
330     "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
331     /* 23, 24 */
332     "fpul", "fpscr",
333     /* floating point registers 25 - 40 */
334     "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
335     "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
336     /* 41, 42 */
337     "ssr", "spc",
338     /* bank 0 43 - 50 */
339     "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
340     /* bank 1 51 - 58 */
341     "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
342     /* 59 - 66 */
343     "", "", "", "", "", "", "", "",
344     /* pseudo bank register.  */
345     "",
346     /* double precision (pseudo) 68 - 75 */
347     "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
348     /* vectors (pseudo) 76 - 79 */
349     "fv0", "fv4", "fv8", "fv12",
350     /* FIXME: missing XF */
351     /* FIXME: missing XD */
352   };
353   if (reg_nr < 0)
354     return NULL;
355   if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
356     return NULL;
357   return register_names[reg_nr];
358 }
359 
360 static const char *
sh_sh4_nofpu_register_name(struct gdbarch * gdbarch,int reg_nr)361 sh_sh4_nofpu_register_name (struct gdbarch *gdbarch, int reg_nr)
362 {
363   static const char *register_names[] = {
364     /* general registers 0-15 */
365     "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
366     "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
367     /* 16 - 22 */
368     "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
369     /* 23, 24 */
370     "", "",
371     /* floating point registers 25 - 40 -- not for nofpu target */
372     "", "", "", "", "", "", "", "",
373     "", "", "", "", "", "", "", "",
374     /* 41, 42 */
375     "ssr", "spc",
376     /* bank 0 43 - 50 */
377     "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
378     /* bank 1 51 - 58 */
379     "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
380     /* 59 - 66 */
381     "", "", "", "", "", "", "", "",
382     /* pseudo bank register.  */
383     "",
384     /* double precision (pseudo) 68 - 75 -- not for nofpu target */
385     "", "", "", "", "", "", "", "",
386     /* vectors (pseudo) 76 - 79 -- not for nofpu target */
387     "", "", "", "",
388   };
389   if (reg_nr < 0)
390     return NULL;
391   if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
392     return NULL;
393   return register_names[reg_nr];
394 }
395 
396 static const char *
sh_sh4al_dsp_register_name(struct gdbarch * gdbarch,int reg_nr)397 sh_sh4al_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
398 {
399   static const char *register_names[] = {
400     "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
401     "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
402     "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
403     "", "dsr",
404     "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
405     "y0", "y1", "", "", "", "", "", "mod",
406     "ssr", "spc",
407     "rs", "re", "", "", "", "", "", "",
408     "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
409     "", "", "", "", "", "", "", "",
410     "", "", "", "", "", "", "", "",
411   };
412   if (reg_nr < 0)
413     return NULL;
414   if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
415     return NULL;
416   return register_names[reg_nr];
417 }
418 
419 /* Implement the breakpoint_kind_from_pc gdbarch method.  */
420 
421 static int
sh_breakpoint_kind_from_pc(struct gdbarch * gdbarch,CORE_ADDR * pcptr)422 sh_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
423 {
424   return 2;
425 }
426 
427 /* Implement the sw_breakpoint_from_kind gdbarch method.  */
428 
429 static const gdb_byte *
sh_sw_breakpoint_from_kind(struct gdbarch * gdbarch,int kind,int * size)430 sh_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
431 {
432   *size = kind;
433 
434   /* For remote stub targets, trapa #20 is used.  */
435   if (strcmp (target_shortname, "remote") == 0)
436     {
437       static unsigned char big_remote_breakpoint[] = { 0xc3, 0x20 };
438       static unsigned char little_remote_breakpoint[] = { 0x20, 0xc3 };
439 
440       if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
441 	return big_remote_breakpoint;
442       else
443 	return little_remote_breakpoint;
444     }
445   else
446     {
447       /* 0xc3c3 is trapa #c3, and it works in big and little endian
448 	 modes.  */
449       static unsigned char breakpoint[] = { 0xc3, 0xc3 };
450 
451       return breakpoint;
452     }
453 }
454 
455 /* Prologue looks like
456    mov.l	r14,@-r15
457    sts.l	pr,@-r15
458    mov.l	<regs>,@-r15
459    sub		<room_for_loca_vars>,r15
460    mov		r15,r14
461 
462    Actually it can be more complicated than this but that's it, basically.  */
463 
464 #define GET_SOURCE_REG(x)  	(((x) >> 4) & 0xf)
465 #define GET_TARGET_REG(x)  	(((x) >> 8) & 0xf)
466 
467 /* JSR @Rm         0100mmmm00001011 */
468 #define IS_JSR(x)		(((x) & 0xf0ff) == 0x400b)
469 
470 /* STS.L PR,@-r15  0100111100100010
471    r15-4-->r15, PR-->(r15) */
472 #define IS_STS(x)  		((x) == 0x4f22)
473 
474 /* STS.L MACL,@-r15  0100111100010010
475    r15-4-->r15, MACL-->(r15) */
476 #define IS_MACL_STS(x)  	((x) == 0x4f12)
477 
478 /* MOV.L Rm,@-r15  00101111mmmm0110
479    r15-4-->r15, Rm-->(R15) */
480 #define IS_PUSH(x) 		(((x) & 0xff0f) == 0x2f06)
481 
482 /* MOV r15,r14     0110111011110011
483    r15-->r14  */
484 #define IS_MOV_SP_FP(x)  	((x) == 0x6ef3)
485 
486 /* ADD #imm,r15    01111111iiiiiiii
487    r15+imm-->r15 */
488 #define IS_ADD_IMM_SP(x) 	(((x) & 0xff00) == 0x7f00)
489 
490 #define IS_MOV_R3(x) 		(((x) & 0xff00) == 0x1a00)
491 #define IS_SHLL_R3(x)		((x) == 0x4300)
492 
493 /* ADD r3,r15      0011111100111100
494    r15+r3-->r15 */
495 #define IS_ADD_R3SP(x)		((x) == 0x3f3c)
496 
497 /* FMOV.S FRm,@-Rn  Rn-4-->Rn, FRm-->(Rn)     1111nnnnmmmm1011
498    FMOV DRm,@-Rn    Rn-8-->Rn, DRm-->(Rn)     1111nnnnmmm01011
499    FMOV XDm,@-Rn    Rn-8-->Rn, XDm-->(Rn)     1111nnnnmmm11011 */
500 /* CV, 2003-08-28: Only suitable with Rn == SP, therefore name changed to
501 		   make this entirely clear.  */
502 /* #define IS_FMOV(x)		(((x) & 0xf00f) == 0xf00b) */
503 #define IS_FPUSH(x)		(((x) & 0xff0f) == 0xff0b)
504 
505 /* MOV Rm,Rn          Rm-->Rn        0110nnnnmmmm0011  4 <= m <= 7 */
506 #define IS_MOV_ARG_TO_REG(x) \
507 	(((x) & 0xf00f) == 0x6003 && \
508 	 ((x) & 0x00f0) >= 0x0040 && \
509 	 ((x) & 0x00f0) <= 0x0070)
510 /* MOV.L Rm,@Rn               0010nnnnmmmm0010  n = 14, 4 <= m <= 7 */
511 #define IS_MOV_ARG_TO_IND_R14(x) \
512 	(((x) & 0xff0f) == 0x2e02 && \
513 	 ((x) & 0x00f0) >= 0x0040 && \
514 	 ((x) & 0x00f0) <= 0x0070)
515 /* MOV.L Rm,@(disp*4,Rn)      00011110mmmmdddd  n = 14, 4 <= m <= 7 */
516 #define IS_MOV_ARG_TO_IND_R14_WITH_DISP(x) \
517 	(((x) & 0xff00) == 0x1e00 && \
518 	 ((x) & 0x00f0) >= 0x0040 && \
519 	 ((x) & 0x00f0) <= 0x0070)
520 
521 /* MOV.W @(disp*2,PC),Rn      1001nnnndddddddd */
522 #define IS_MOVW_PCREL_TO_REG(x)	(((x) & 0xf000) == 0x9000)
523 /* MOV.L @(disp*4,PC),Rn      1101nnnndddddddd */
524 #define IS_MOVL_PCREL_TO_REG(x)	(((x) & 0xf000) == 0xd000)
525 /* MOVI20 #imm20,Rn           0000nnnniiii0000 */
526 #define IS_MOVI20(x)		(((x) & 0xf00f) == 0x0000)
527 /* SUB Rn,R15                 00111111nnnn1000 */
528 #define IS_SUB_REG_FROM_SP(x)	(((x) & 0xff0f) == 0x3f08)
529 
530 #define FPSCR_SZ		(1 << 20)
531 
532 /* The following instructions are used for epilogue testing.  */
533 #define IS_RESTORE_FP(x)	((x) == 0x6ef6)
534 #define IS_RTS(x)		((x) == 0x000b)
535 #define IS_LDS(x)  		((x) == 0x4f26)
536 #define IS_MACL_LDS(x)  	((x) == 0x4f16)
537 #define IS_MOV_FP_SP(x)  	((x) == 0x6fe3)
538 #define IS_ADD_REG_TO_FP(x)	(((x) & 0xff0f) == 0x3e0c)
539 #define IS_ADD_IMM_FP(x) 	(((x) & 0xff00) == 0x7e00)
540 
541 static CORE_ADDR
sh_analyze_prologue(struct gdbarch * gdbarch,CORE_ADDR pc,CORE_ADDR limit_pc,struct sh_frame_cache * cache,ULONGEST fpscr)542 sh_analyze_prologue (struct gdbarch *gdbarch,
543 		     CORE_ADDR pc, CORE_ADDR limit_pc,
544 		     struct sh_frame_cache *cache, ULONGEST fpscr)
545 {
546   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
547   ULONGEST inst;
548   int offset;
549   int sav_offset = 0;
550   int r3_val = 0;
551   int reg, sav_reg = -1;
552 
553   cache->uses_fp = 0;
554   for (; pc < limit_pc; pc += 2)
555     {
556       inst = read_memory_unsigned_integer (pc, 2, byte_order);
557       /* See where the registers will be saved to.  */
558       if (IS_PUSH (inst))
559 	{
560 	  cache->saved_regs[GET_SOURCE_REG (inst)] = cache->sp_offset;
561 	  cache->sp_offset += 4;
562 	}
563       else if (IS_STS (inst))
564 	{
565 	  cache->saved_regs[PR_REGNUM] = cache->sp_offset;
566 	  cache->sp_offset += 4;
567 	}
568       else if (IS_MACL_STS (inst))
569 	{
570 	  cache->saved_regs[MACL_REGNUM] = cache->sp_offset;
571 	  cache->sp_offset += 4;
572 	}
573       else if (IS_MOV_R3 (inst))
574 	{
575 	  r3_val = ((inst & 0xff) ^ 0x80) - 0x80;
576 	}
577       else if (IS_SHLL_R3 (inst))
578 	{
579 	  r3_val <<= 1;
580 	}
581       else if (IS_ADD_R3SP (inst))
582 	{
583 	  cache->sp_offset += -r3_val;
584 	}
585       else if (IS_ADD_IMM_SP (inst))
586 	{
587 	  offset = ((inst & 0xff) ^ 0x80) - 0x80;
588 	  cache->sp_offset -= offset;
589 	}
590       else if (IS_MOVW_PCREL_TO_REG (inst))
591 	{
592 	  if (sav_reg < 0)
593 	    {
594 	      reg = GET_TARGET_REG (inst);
595 	      if (reg < 14)
596 		{
597 		  sav_reg = reg;
598 		  offset = (inst & 0xff) << 1;
599 		  sav_offset =
600 		    read_memory_integer ((pc + 4) + offset, 2, byte_order);
601 		}
602 	    }
603 	}
604       else if (IS_MOVL_PCREL_TO_REG (inst))
605 	{
606 	  if (sav_reg < 0)
607 	    {
608 	      reg = GET_TARGET_REG (inst);
609 	      if (reg < 14)
610 		{
611 		  sav_reg = reg;
612 		  offset = (inst & 0xff) << 2;
613 		  sav_offset =
614 		    read_memory_integer (((pc & 0xfffffffc) + 4) + offset,
615 					 4, byte_order);
616 		}
617 	    }
618 	}
619       else if (IS_MOVI20 (inst)
620 	       && (pc + 2 < limit_pc))
621         {
622 	  if (sav_reg < 0)
623 	    {
624 	      reg = GET_TARGET_REG (inst);
625 	      if (reg < 14)
626 	        {
627 		  sav_reg = reg;
628 		  sav_offset = GET_SOURCE_REG (inst) << 16;
629 		  /* MOVI20 is a 32 bit instruction!  */
630 		  pc += 2;
631 		  sav_offset
632 		    |= read_memory_unsigned_integer (pc, 2, byte_order);
633 		  /* Now sav_offset contains an unsigned 20 bit value.
634 		     It must still get sign extended.  */
635 		  if (sav_offset & 0x00080000)
636 		    sav_offset |= 0xfff00000;
637 		}
638 	    }
639 	}
640       else if (IS_SUB_REG_FROM_SP (inst))
641 	{
642 	  reg = GET_SOURCE_REG (inst);
643 	  if (sav_reg > 0 && reg == sav_reg)
644 	    {
645 	      sav_reg = -1;
646 	    }
647 	  cache->sp_offset += sav_offset;
648 	}
649       else if (IS_FPUSH (inst))
650 	{
651 	  if (fpscr & FPSCR_SZ)
652 	    {
653 	      cache->sp_offset += 8;
654 	    }
655 	  else
656 	    {
657 	      cache->sp_offset += 4;
658 	    }
659 	}
660       else if (IS_MOV_SP_FP (inst))
661 	{
662 	  pc += 2;
663 	  /* Don't go any further than six more instructions.  */
664 	  limit_pc = std::min (limit_pc, pc + (2 * 6));
665 
666 	  cache->uses_fp = 1;
667 	  /* At this point, only allow argument register moves to other
668 	     registers or argument register moves to @(X,fp) which are
669 	     moving the register arguments onto the stack area allocated
670 	     by a former add somenumber to SP call.  Don't allow moving
671 	     to an fp indirect address above fp + cache->sp_offset.  */
672 	  for (; pc < limit_pc; pc += 2)
673 	    {
674 	      inst = read_memory_integer (pc, 2, byte_order);
675 	      if (IS_MOV_ARG_TO_IND_R14 (inst))
676 		{
677 		  reg = GET_SOURCE_REG (inst);
678 		  if (cache->sp_offset > 0)
679 		    cache->saved_regs[reg] = cache->sp_offset;
680 		}
681 	      else if (IS_MOV_ARG_TO_IND_R14_WITH_DISP (inst))
682 		{
683 		  reg = GET_SOURCE_REG (inst);
684 		  offset = (inst & 0xf) * 4;
685 		  if (cache->sp_offset > offset)
686 		    cache->saved_regs[reg] = cache->sp_offset - offset;
687 		}
688 	      else if (IS_MOV_ARG_TO_REG (inst))
689 		continue;
690 	      else
691 		break;
692 	    }
693 	  break;
694 	}
695       else if (IS_JSR (inst))
696 	{
697 	  /* We have found a jsr that has been scheduled into the prologue.
698 	     If we continue the scan and return a pc someplace after this,
699 	     then setting a breakpoint on this function will cause it to
700 	     appear to be called after the function it is calling via the
701 	     jsr, which will be very confusing.  Most likely the next
702 	     instruction is going to be IS_MOV_SP_FP in the delay slot.  If
703 	     so, note that before returning the current pc.  */
704 	  if (pc + 2 < limit_pc)
705 	    {
706 	      inst = read_memory_integer (pc + 2, 2, byte_order);
707 	      if (IS_MOV_SP_FP (inst))
708 		cache->uses_fp = 1;
709 	    }
710 	  break;
711 	}
712 #if 0		/* This used to just stop when it found an instruction
713 		   that was not considered part of the prologue.  Now,
714 		   we just keep going looking for likely
715 		   instructions.  */
716       else
717 	break;
718 #endif
719     }
720 
721   return pc;
722 }
723 
724 /* Skip any prologue before the guts of a function.  */
725 static CORE_ADDR
sh_skip_prologue(struct gdbarch * gdbarch,CORE_ADDR pc)726 sh_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
727 {
728   CORE_ADDR post_prologue_pc, func_addr, func_end_addr, limit_pc;
729   struct sh_frame_cache cache;
730 
731   /* See if we can determine the end of the prologue via the symbol table.
732      If so, then return either PC, or the PC after the prologue, whichever
733      is greater.  */
734   if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
735     {
736       post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr);
737       if (post_prologue_pc != 0)
738         return std::max (pc, post_prologue_pc);
739     }
740 
741   /* Can't determine prologue from the symbol table, need to examine
742      instructions.  */
743 
744   /* Find an upper limit on the function prologue using the debug
745      information.  If the debug information could not be used to provide
746      that bound, then use an arbitrary large number as the upper bound.  */
747   limit_pc = skip_prologue_using_sal (gdbarch, pc);
748   if (limit_pc == 0)
749     /* Don't go any further than 28 instructions.  */
750     limit_pc = pc + (2 * 28);
751 
752   /* Do not allow limit_pc to be past the function end, if we know
753      where that end is...  */
754   if (func_end_addr != 0)
755     limit_pc = std::min (limit_pc, func_end_addr);
756 
757   cache.sp_offset = -4;
758   post_prologue_pc = sh_analyze_prologue (gdbarch, pc, limit_pc, &cache, 0);
759   if (cache.uses_fp)
760     pc = post_prologue_pc;
761 
762   return pc;
763 }
764 
765 /* The ABI says:
766 
767    Aggregate types not bigger than 8 bytes that have the same size and
768    alignment as one of the integer scalar types are returned in the
769    same registers as the integer type they match.
770 
771    For example, a 2-byte aligned structure with size 2 bytes has the
772    same size and alignment as a short int, and will be returned in R0.
773    A 4-byte aligned structure with size 8 bytes has the same size and
774    alignment as a long long int, and will be returned in R0 and R1.
775 
776    When an aggregate type is returned in R0 and R1, R0 contains the
777    first four bytes of the aggregate, and R1 contains the
778    remainder.  If the size of the aggregate type is not a multiple of 4
779    bytes, the aggregate is tail-padded up to a multiple of 4
780    bytes.  The value of the padding is undefined.  For little-endian
781    targets the padding will appear at the most significant end of the
782    last element, for big-endian targets the padding appears at the
783    least significant end of the last element.
784 
785    All other aggregate types are returned by address.  The caller
786    function passes the address of an area large enough to hold the
787    aggregate value in R2.  The called function stores the result in
788    this location.
789 
790    To reiterate, structs smaller than 8 bytes could also be returned
791    in memory, if they don't pass the "same size and alignment as an
792    integer type" rule.
793 
794    For example, in
795 
796    struct s { char c[3]; } wibble;
797    struct s foo(void) {  return wibble; }
798 
799    the return value from foo() will be in memory, not
800    in R0, because there is no 3-byte integer type.
801 
802    Similarly, in
803 
804    struct s { char c[2]; } wibble;
805    struct s foo(void) {  return wibble; }
806 
807    because a struct containing two chars has alignment 1, that matches
808    type char, but size 2, that matches type short.  There's no integer
809    type that has alignment 1 and size 2, so the struct is returned in
810    memory.  */
811 
812 static int
sh_use_struct_convention(int renesas_abi,struct type * type)813 sh_use_struct_convention (int renesas_abi, struct type *type)
814 {
815   int len = TYPE_LENGTH (type);
816   int nelem = type->num_fields ();
817 
818   /* The Renesas ABI returns aggregate types always on stack.  */
819   if (renesas_abi && (type->code () == TYPE_CODE_STRUCT
820 		      || type->code () == TYPE_CODE_UNION))
821     return 1;
822 
823   /* Non-power of 2 length types and types bigger than 8 bytes (which don't
824      fit in two registers anyway) use struct convention.  */
825   if (len != 1 && len != 2 && len != 4 && len != 8)
826     return 1;
827 
828   /* Scalar types and aggregate types with exactly one field are aligned
829      by definition.  They are returned in registers.  */
830   if (nelem <= 1)
831     return 0;
832 
833   /* If the first field in the aggregate has the same length as the entire
834      aggregate type, the type is returned in registers.  */
835   if (TYPE_LENGTH (type->field (0).type ()) == len)
836     return 0;
837 
838   /* If the size of the aggregate is 8 bytes and the first field is
839      of size 4 bytes its alignment is equal to long long's alignment,
840      so it's returned in registers.  */
841   if (len == 8 && TYPE_LENGTH (type->field (0).type ()) == 4)
842     return 0;
843 
844   /* Otherwise use struct convention.  */
845   return 1;
846 }
847 
848 static int
sh_use_struct_convention_nofpu(int renesas_abi,struct type * type)849 sh_use_struct_convention_nofpu (int renesas_abi, struct type *type)
850 {
851   /* The Renesas ABI returns long longs/doubles etc. always on stack.  */
852   if (renesas_abi && type->num_fields () == 0 && TYPE_LENGTH (type) >= 8)
853     return 1;
854   return sh_use_struct_convention (renesas_abi, type);
855 }
856 
857 static CORE_ADDR
sh_frame_align(struct gdbarch * ignore,CORE_ADDR sp)858 sh_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
859 {
860   return sp & ~3;
861 }
862 
863 /* Function: push_dummy_call (formerly push_arguments)
864    Setup the function arguments for calling a function in the inferior.
865 
866    On the Renesas SH architecture, there are four registers (R4 to R7)
867    which are dedicated for passing function arguments.  Up to the first
868    four arguments (depending on size) may go into these registers.
869    The rest go on the stack.
870 
871    MVS: Except on SH variants that have floating point registers.
872    In that case, float and double arguments are passed in the same
873    manner, but using FP registers instead of GP registers.
874 
875    Arguments that are smaller than 4 bytes will still take up a whole
876    register or a whole 32-bit word on the stack, and will be
877    right-justified in the register or the stack word.  This includes
878    chars, shorts, and small aggregate types.
879 
880    Arguments that are larger than 4 bytes may be split between two or
881    more registers.  If there are not enough registers free, an argument
882    may be passed partly in a register (or registers), and partly on the
883    stack.  This includes doubles, long longs, and larger aggregates.
884    As far as I know, there is no upper limit to the size of aggregates
885    that will be passed in this way; in other words, the convention of
886    passing a pointer to a large aggregate instead of a copy is not used.
887 
888    MVS: The above appears to be true for the SH variants that do not
889    have an FPU, however those that have an FPU appear to copy the
890    aggregate argument onto the stack (and not place it in registers)
891    if it is larger than 16 bytes (four GP registers).
892 
893    An exceptional case exists for struct arguments (and possibly other
894    aggregates such as arrays) if the size is larger than 4 bytes but
895    not a multiple of 4 bytes.  In this case the argument is never split
896    between the registers and the stack, but instead is copied in its
897    entirety onto the stack, AND also copied into as many registers as
898    there is room for.  In other words, space in registers permitting,
899    two copies of the same argument are passed in.  As far as I can tell,
900    only the one on the stack is used, although that may be a function
901    of the level of compiler optimization.  I suspect this is a compiler
902    bug.  Arguments of these odd sizes are left-justified within the
903    word (as opposed to arguments smaller than 4 bytes, which are
904    right-justified).
905 
906    If the function is to return an aggregate type such as a struct, it
907    is either returned in the normal return value register R0 (if its
908    size is no greater than one byte), or else the caller must allocate
909    space into which the callee will copy the return value (if the size
910    is greater than one byte).  In this case, a pointer to the return
911    value location is passed into the callee in register R2, which does
912    not displace any of the other arguments passed in via registers R4
913    to R7.  */
914 
915 /* Helper function to justify value in register according to endianness.  */
916 static const gdb_byte *
sh_justify_value_in_reg(struct gdbarch * gdbarch,struct value * val,int len)917 sh_justify_value_in_reg (struct gdbarch *gdbarch, struct value *val, int len)
918 {
919   static gdb_byte valbuf[4];
920 
921   memset (valbuf, 0, sizeof (valbuf));
922   if (len < 4)
923     {
924       /* value gets right-justified in the register or stack word.  */
925       if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
926 	memcpy (valbuf + (4 - len), value_contents (val), len);
927       else
928 	memcpy (valbuf, value_contents (val), len);
929       return valbuf;
930     }
931   return value_contents (val);
932 }
933 
934 /* Helper function to eval number of bytes to allocate on stack.  */
935 static CORE_ADDR
sh_stack_allocsize(int nargs,struct value ** args)936 sh_stack_allocsize (int nargs, struct value **args)
937 {
938   int stack_alloc = 0;
939   while (nargs-- > 0)
940     stack_alloc += ((TYPE_LENGTH (value_type (args[nargs])) + 3) & ~3);
941   return stack_alloc;
942 }
943 
944 /* Helper functions for getting the float arguments right.  Registers usage
945    depends on the ABI and the endianness.  The comments should enlighten how
946    it's intended to work.  */
947 
948 /* This array stores which of the float arg registers are already in use.  */
949 static int flt_argreg_array[FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM + 1];
950 
951 /* This function just resets the above array to "no reg used so far".  */
952 static void
sh_init_flt_argreg(void)953 sh_init_flt_argreg (void)
954 {
955   memset (flt_argreg_array, 0, sizeof flt_argreg_array);
956 }
957 
958 /* This function returns the next register to use for float arg passing.
959    It returns either a valid value between FLOAT_ARG0_REGNUM and
960    FLOAT_ARGLAST_REGNUM if a register is available, otherwise it returns
961    FLOAT_ARGLAST_REGNUM + 1 to indicate that no register is available.
962 
963    Note that register number 0 in flt_argreg_array corresponds with the
964    real float register fr4.  In contrast to FLOAT_ARG0_REGNUM (value is
965    29) the parity of the register number is preserved, which is important
966    for the double register passing test (see the "argreg & 1" test below).  */
967 static int
sh_next_flt_argreg(struct gdbarch * gdbarch,int len,struct type * func_type)968 sh_next_flt_argreg (struct gdbarch *gdbarch, int len, struct type *func_type)
969 {
970   int argreg;
971 
972   /* First search for the next free register.  */
973   for (argreg = 0; argreg <= FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM;
974        ++argreg)
975     if (!flt_argreg_array[argreg])
976       break;
977 
978   /* No register left?  */
979   if (argreg > FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM)
980     return FLOAT_ARGLAST_REGNUM + 1;
981 
982   if (len == 8)
983     {
984       /* Doubles are always starting in a even register number.  */
985       if (argreg & 1)
986 	{
987 	  /* In gcc ABI, the skipped register is lost for further argument
988 	     passing now.  Not so in Renesas ABI.  */
989 	  if (!sh_is_renesas_calling_convention (func_type))
990 	    flt_argreg_array[argreg] = 1;
991 
992 	  ++argreg;
993 
994 	  /* No register left?  */
995 	  if (argreg > FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM)
996 	    return FLOAT_ARGLAST_REGNUM + 1;
997 	}
998       /* Also mark the next register as used.  */
999       flt_argreg_array[argreg + 1] = 1;
1000     }
1001   else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE
1002 	   && !sh_is_renesas_calling_convention (func_type))
1003     {
1004       /* In little endian, gcc passes floats like this: f5, f4, f7, f6, ...  */
1005       if (!flt_argreg_array[argreg + 1])
1006 	++argreg;
1007     }
1008   flt_argreg_array[argreg] = 1;
1009   return FLOAT_ARG0_REGNUM + argreg;
1010 }
1011 
1012 /* Helper function which figures out, if a type is treated like a float type.
1013 
1014    The FPU ABIs have a special way how to treat types as float types.
1015    Structures with exactly one member, which is of type float or double, are
1016    treated exactly as the base types float or double:
1017 
1018      struct sf {
1019        float f;
1020      };
1021 
1022      struct sd {
1023        double d;
1024      };
1025 
1026    are handled the same way as just
1027 
1028      float f;
1029 
1030      double d;
1031 
1032    As a result, arguments of these struct types are pushed into floating point
1033    registers exactly as floats or doubles, using the same decision algorithm.
1034 
1035    The same is valid if these types are used as function return types.  The
1036    above structs are returned in fr0 resp. fr0,fr1 instead of in r0, r0,r1
1037    or even using struct convention as it is for other structs.  */
1038 
1039 static int
sh_treat_as_flt_p(struct type * type)1040 sh_treat_as_flt_p (struct type *type)
1041 {
1042   /* Ordinary float types are obviously treated as float.  */
1043   if (type->code () == TYPE_CODE_FLT)
1044     return 1;
1045   /* Otherwise non-struct types are not treated as float.  */
1046   if (type->code () != TYPE_CODE_STRUCT)
1047     return 0;
1048   /* Otherwise structs with more than one member are not treated as float.  */
1049   if (type->num_fields () != 1)
1050     return 0;
1051   /* Otherwise if the type of that member is float, the whole type is
1052      treated as float.  */
1053   if (type->field (0).type ()->code () == TYPE_CODE_FLT)
1054     return 1;
1055   /* Otherwise it's not treated as float.  */
1056   return 0;
1057 }
1058 
1059 static CORE_ADDR
sh_push_dummy_call_fpu(struct gdbarch * gdbarch,struct value * function,struct regcache * regcache,CORE_ADDR bp_addr,int nargs,struct value ** args,CORE_ADDR sp,function_call_return_method return_method,CORE_ADDR struct_addr)1060 sh_push_dummy_call_fpu (struct gdbarch *gdbarch,
1061 			struct value *function,
1062 			struct regcache *regcache,
1063 			CORE_ADDR bp_addr, int nargs,
1064 			struct value **args,
1065 			CORE_ADDR sp, function_call_return_method return_method,
1066 			CORE_ADDR struct_addr)
1067 {
1068   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1069   int stack_offset = 0;
1070   int argreg = ARG0_REGNUM;
1071   int flt_argreg = 0;
1072   int argnum;
1073   struct type *func_type = value_type (function);
1074   struct type *type;
1075   CORE_ADDR regval;
1076   const gdb_byte *val;
1077   int len, reg_size = 0;
1078   int pass_on_stack = 0;
1079   int treat_as_flt;
1080   int last_reg_arg = INT_MAX;
1081 
1082   /* The Renesas ABI expects all varargs arguments, plus the last
1083      non-vararg argument to be on the stack, no matter how many
1084      registers have been used so far.  */
1085   if (sh_is_renesas_calling_convention (func_type)
1086       && TYPE_VARARGS (func_type))
1087     last_reg_arg = func_type->num_fields () - 2;
1088 
1089   /* First force sp to a 4-byte alignment.  */
1090   sp = sh_frame_align (gdbarch, sp);
1091 
1092   /* Make room on stack for args.  */
1093   sp -= sh_stack_allocsize (nargs, args);
1094 
1095   /* Initialize float argument mechanism.  */
1096   sh_init_flt_argreg ();
1097 
1098   /* Now load as many as possible of the first arguments into
1099      registers, and push the rest onto the stack.  There are 16 bytes
1100      in four registers available.  Loop thru args from first to last.  */
1101   for (argnum = 0; argnum < nargs; argnum++)
1102     {
1103       type = value_type (args[argnum]);
1104       len = TYPE_LENGTH (type);
1105       val = sh_justify_value_in_reg (gdbarch, args[argnum], len);
1106 
1107       /* Some decisions have to be made how various types are handled.
1108          This also differs in different ABIs.  */
1109       pass_on_stack = 0;
1110 
1111       /* Find out the next register to use for a floating point value.  */
1112       treat_as_flt = sh_treat_as_flt_p (type);
1113       if (treat_as_flt)
1114 	flt_argreg = sh_next_flt_argreg (gdbarch, len, func_type);
1115       /* In Renesas ABI, long longs and aggregate types are always passed
1116 	 on stack.  */
1117       else if (sh_is_renesas_calling_convention (func_type)
1118 	       && ((type->code () == TYPE_CODE_INT && len == 8)
1119 		   || type->code () == TYPE_CODE_STRUCT
1120 		   || type->code () == TYPE_CODE_UNION))
1121 	pass_on_stack = 1;
1122       /* In contrast to non-FPU CPUs, arguments are never split between
1123 	 registers and stack.  If an argument doesn't fit in the remaining
1124 	 registers it's always pushed entirely on the stack.  */
1125       else if (len > ((ARGLAST_REGNUM - argreg + 1) * 4))
1126 	pass_on_stack = 1;
1127 
1128       while (len > 0)
1129 	{
1130 	  if ((treat_as_flt && flt_argreg > FLOAT_ARGLAST_REGNUM)
1131 	      || (!treat_as_flt && (argreg > ARGLAST_REGNUM
1132 	                            || pass_on_stack))
1133 	      || argnum > last_reg_arg)
1134 	    {
1135 	      /* The data goes entirely on the stack, 4-byte aligned.  */
1136 	      reg_size = (len + 3) & ~3;
1137 	      write_memory (sp + stack_offset, val, reg_size);
1138 	      stack_offset += reg_size;
1139 	    }
1140 	  else if (treat_as_flt && flt_argreg <= FLOAT_ARGLAST_REGNUM)
1141 	    {
1142 	      /* Argument goes in a float argument register.  */
1143 	      reg_size = register_size (gdbarch, flt_argreg);
1144 	      regval = extract_unsigned_integer (val, reg_size, byte_order);
1145 	      /* In little endian mode, float types taking two registers
1146 	         (doubles on sh4, long doubles on sh2e, sh3e and sh4) must
1147 		 be stored swapped in the argument registers.  The below
1148 		 code first writes the first 32 bits in the next but one
1149 		 register, increments the val and len values accordingly
1150 		 and then proceeds as normal by writing the second 32 bits
1151 		 into the next register.  */
1152 	      if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE
1153 	          && TYPE_LENGTH (type) == 2 * reg_size)
1154 	        {
1155 		  regcache_cooked_write_unsigned (regcache, flt_argreg + 1,
1156 						  regval);
1157 		  val += reg_size;
1158 		  len -= reg_size;
1159 		  regval = extract_unsigned_integer (val, reg_size,
1160 						     byte_order);
1161 		}
1162 	      regcache_cooked_write_unsigned (regcache, flt_argreg++, regval);
1163 	    }
1164 	  else if (!treat_as_flt && argreg <= ARGLAST_REGNUM)
1165 	    {
1166 	      /* there's room in a register */
1167 	      reg_size = register_size (gdbarch, argreg);
1168 	      regval = extract_unsigned_integer (val, reg_size, byte_order);
1169 	      regcache_cooked_write_unsigned (regcache, argreg++, regval);
1170 	    }
1171 	  /* Store the value one register at a time or in one step on
1172 	     stack.  */
1173 	  len -= reg_size;
1174 	  val += reg_size;
1175 	}
1176     }
1177 
1178   if (return_method == return_method_struct)
1179     {
1180       if (sh_is_renesas_calling_convention (func_type))
1181 	/* If the function uses the Renesas ABI, subtract another 4 bytes from
1182 	   the stack and store the struct return address there.  */
1183 	write_memory_unsigned_integer (sp -= 4, 4, byte_order, struct_addr);
1184       else
1185 	/* Using the gcc ABI, the "struct return pointer" pseudo-argument has
1186 	   its own dedicated register.  */
1187 	regcache_cooked_write_unsigned (regcache,
1188 					STRUCT_RETURN_REGNUM, struct_addr);
1189     }
1190 
1191   /* Store return address.  */
1192   regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
1193 
1194   /* Update stack pointer.  */
1195   regcache_cooked_write_unsigned (regcache,
1196 				  gdbarch_sp_regnum (gdbarch), sp);
1197 
1198   return sp;
1199 }
1200 
1201 static CORE_ADDR
sh_push_dummy_call_nofpu(struct gdbarch * gdbarch,struct value * function,struct regcache * regcache,CORE_ADDR bp_addr,int nargs,struct value ** args,CORE_ADDR sp,function_call_return_method return_method,CORE_ADDR struct_addr)1202 sh_push_dummy_call_nofpu (struct gdbarch *gdbarch,
1203 			  struct value *function,
1204 			  struct regcache *regcache,
1205 			  CORE_ADDR bp_addr,
1206 			  int nargs, struct value **args,
1207 			  CORE_ADDR sp,
1208 			  function_call_return_method return_method,
1209 			  CORE_ADDR struct_addr)
1210 {
1211   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1212   int stack_offset = 0;
1213   int argreg = ARG0_REGNUM;
1214   int argnum;
1215   struct type *func_type = value_type (function);
1216   struct type *type;
1217   CORE_ADDR regval;
1218   const gdb_byte *val;
1219   int len, reg_size = 0;
1220   int pass_on_stack = 0;
1221   int last_reg_arg = INT_MAX;
1222 
1223   /* The Renesas ABI expects all varargs arguments, plus the last
1224      non-vararg argument to be on the stack, no matter how many
1225      registers have been used so far.  */
1226   if (sh_is_renesas_calling_convention (func_type)
1227       && TYPE_VARARGS (func_type))
1228     last_reg_arg = func_type->num_fields () - 2;
1229 
1230   /* First force sp to a 4-byte alignment.  */
1231   sp = sh_frame_align (gdbarch, sp);
1232 
1233   /* Make room on stack for args.  */
1234   sp -= sh_stack_allocsize (nargs, args);
1235 
1236   /* Now load as many as possible of the first arguments into
1237      registers, and push the rest onto the stack.  There are 16 bytes
1238      in four registers available.  Loop thru args from first to last.  */
1239   for (argnum = 0; argnum < nargs; argnum++)
1240     {
1241       type = value_type (args[argnum]);
1242       len = TYPE_LENGTH (type);
1243       val = sh_justify_value_in_reg (gdbarch, args[argnum], len);
1244 
1245       /* Some decisions have to be made how various types are handled.
1246 	 This also differs in different ABIs.  */
1247       pass_on_stack = 0;
1248       /* Renesas ABI pushes doubles and long longs entirely on stack.
1249 	 Same goes for aggregate types.  */
1250       if (sh_is_renesas_calling_convention (func_type)
1251 	  && ((type->code () == TYPE_CODE_INT && len >= 8)
1252 	      || (type->code () == TYPE_CODE_FLT && len >= 8)
1253 	      || type->code () == TYPE_CODE_STRUCT
1254 	      || type->code () == TYPE_CODE_UNION))
1255 	pass_on_stack = 1;
1256       while (len > 0)
1257 	{
1258 	  if (argreg > ARGLAST_REGNUM || pass_on_stack
1259 	      || argnum > last_reg_arg)
1260 	    {
1261 	      /* The remainder of the data goes entirely on the stack,
1262 	         4-byte aligned.  */
1263 	      reg_size = (len + 3) & ~3;
1264 	      write_memory (sp + stack_offset, val, reg_size);
1265 	      stack_offset += reg_size;
1266 	    }
1267 	  else if (argreg <= ARGLAST_REGNUM)
1268 	    {
1269 	      /* There's room in a register.  */
1270 	      reg_size = register_size (gdbarch, argreg);
1271 	      regval = extract_unsigned_integer (val, reg_size, byte_order);
1272 	      regcache_cooked_write_unsigned (regcache, argreg++, regval);
1273 	    }
1274 	  /* Store the value reg_size bytes at a time.  This means that things
1275 	     larger than reg_size bytes may go partly in registers and partly
1276 	     on the stack.  */
1277 	  len -= reg_size;
1278 	  val += reg_size;
1279 	}
1280     }
1281 
1282   if (return_method == return_method_struct)
1283     {
1284       if (sh_is_renesas_calling_convention (func_type))
1285 	/* If the function uses the Renesas ABI, subtract another 4 bytes from
1286 	   the stack and store the struct return address there.  */
1287 	write_memory_unsigned_integer (sp -= 4, 4, byte_order, struct_addr);
1288       else
1289 	/* Using the gcc ABI, the "struct return pointer" pseudo-argument has
1290 	   its own dedicated register.  */
1291 	regcache_cooked_write_unsigned (regcache,
1292 					STRUCT_RETURN_REGNUM, struct_addr);
1293     }
1294 
1295   /* Store return address.  */
1296   regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
1297 
1298   /* Update stack pointer.  */
1299   regcache_cooked_write_unsigned (regcache,
1300 				  gdbarch_sp_regnum (gdbarch), sp);
1301 
1302   return sp;
1303 }
1304 
1305 /* Find a function's return value in the appropriate registers (in
1306    regbuf), and copy it into valbuf.  Extract from an array REGBUF
1307    containing the (raw) register state a function return value of type
1308    TYPE, and copy that, in virtual format, into VALBUF.  */
1309 static void
sh_extract_return_value_nofpu(struct type * type,struct regcache * regcache,gdb_byte * valbuf)1310 sh_extract_return_value_nofpu (struct type *type, struct regcache *regcache,
1311 			       gdb_byte *valbuf)
1312 {
1313   struct gdbarch *gdbarch = regcache->arch ();
1314   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1315   int len = TYPE_LENGTH (type);
1316 
1317   if (len <= 4)
1318     {
1319       ULONGEST c;
1320 
1321       regcache_cooked_read_unsigned (regcache, R0_REGNUM, &c);
1322       store_unsigned_integer (valbuf, len, byte_order, c);
1323     }
1324   else if (len == 8)
1325     {
1326       int i, regnum = R0_REGNUM;
1327       for (i = 0; i < len; i += 4)
1328 	regcache->raw_read (regnum++, valbuf + i);
1329     }
1330   else
1331     error (_("bad size for return value"));
1332 }
1333 
1334 static void
sh_extract_return_value_fpu(struct type * type,struct regcache * regcache,gdb_byte * valbuf)1335 sh_extract_return_value_fpu (struct type *type, struct regcache *regcache,
1336 			     gdb_byte *valbuf)
1337 {
1338   struct gdbarch *gdbarch = regcache->arch ();
1339   if (sh_treat_as_flt_p (type))
1340     {
1341       int len = TYPE_LENGTH (type);
1342       int i, regnum = gdbarch_fp0_regnum (gdbarch);
1343       for (i = 0; i < len; i += 4)
1344 	if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1345 	  regcache->raw_read (regnum++,
1346 			     valbuf + len - 4 - i);
1347 	else
1348 	  regcache->raw_read (regnum++, valbuf + i);
1349     }
1350   else
1351     sh_extract_return_value_nofpu (type, regcache, valbuf);
1352 }
1353 
1354 /* Write into appropriate registers a function return value
1355    of type TYPE, given in virtual format.
1356    If the architecture is sh4 or sh3e, store a function's return value
1357    in the R0 general register or in the FP0 floating point register,
1358    depending on the type of the return value.  In all the other cases
1359    the result is stored in r0, left-justified.  */
1360 static void
sh_store_return_value_nofpu(struct type * type,struct regcache * regcache,const gdb_byte * valbuf)1361 sh_store_return_value_nofpu (struct type *type, struct regcache *regcache,
1362 			     const gdb_byte *valbuf)
1363 {
1364   struct gdbarch *gdbarch = regcache->arch ();
1365   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1366   ULONGEST val;
1367   int len = TYPE_LENGTH (type);
1368 
1369   if (len <= 4)
1370     {
1371       val = extract_unsigned_integer (valbuf, len, byte_order);
1372       regcache_cooked_write_unsigned (regcache, R0_REGNUM, val);
1373     }
1374   else
1375     {
1376       int i, regnum = R0_REGNUM;
1377       for (i = 0; i < len; i += 4)
1378 	regcache->raw_write (regnum++, valbuf + i);
1379     }
1380 }
1381 
1382 static void
sh_store_return_value_fpu(struct type * type,struct regcache * regcache,const gdb_byte * valbuf)1383 sh_store_return_value_fpu (struct type *type, struct regcache *regcache,
1384 			   const gdb_byte *valbuf)
1385 {
1386   struct gdbarch *gdbarch = regcache->arch ();
1387   if (sh_treat_as_flt_p (type))
1388     {
1389       int len = TYPE_LENGTH (type);
1390       int i, regnum = gdbarch_fp0_regnum (gdbarch);
1391       for (i = 0; i < len; i += 4)
1392 	if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1393 	  regcache->raw_write (regnum++,
1394 			      valbuf + len - 4 - i);
1395 	else
1396 	  regcache->raw_write (regnum++, valbuf + i);
1397     }
1398   else
1399     sh_store_return_value_nofpu (type, regcache, valbuf);
1400 }
1401 
1402 static enum return_value_convention
sh_return_value_nofpu(struct gdbarch * gdbarch,struct value * function,struct type * type,struct regcache * regcache,gdb_byte * readbuf,const gdb_byte * writebuf)1403 sh_return_value_nofpu (struct gdbarch *gdbarch, struct value *function,
1404 		       struct type *type, struct regcache *regcache,
1405 		       gdb_byte *readbuf, const gdb_byte *writebuf)
1406 {
1407   struct type *func_type = function ? value_type (function) : NULL;
1408 
1409   if (sh_use_struct_convention_nofpu (
1410   	sh_is_renesas_calling_convention (func_type), type))
1411     return RETURN_VALUE_STRUCT_CONVENTION;
1412   if (writebuf)
1413     sh_store_return_value_nofpu (type, regcache, writebuf);
1414   else if (readbuf)
1415     sh_extract_return_value_nofpu (type, regcache, readbuf);
1416   return RETURN_VALUE_REGISTER_CONVENTION;
1417 }
1418 
1419 static enum return_value_convention
sh_return_value_fpu(struct gdbarch * gdbarch,struct value * function,struct type * type,struct regcache * regcache,gdb_byte * readbuf,const gdb_byte * writebuf)1420 sh_return_value_fpu (struct gdbarch *gdbarch, struct value *function,
1421 		     struct type *type, struct regcache *regcache,
1422 		     gdb_byte *readbuf, const gdb_byte *writebuf)
1423 {
1424   struct type *func_type = function ? value_type (function) : NULL;
1425 
1426   if (sh_use_struct_convention (
1427 	sh_is_renesas_calling_convention (func_type), type))
1428     return RETURN_VALUE_STRUCT_CONVENTION;
1429   if (writebuf)
1430     sh_store_return_value_fpu (type, regcache, writebuf);
1431   else if (readbuf)
1432     sh_extract_return_value_fpu (type, regcache, readbuf);
1433   return RETURN_VALUE_REGISTER_CONVENTION;
1434 }
1435 
1436 static struct type *
sh_sh2a_register_type(struct gdbarch * gdbarch,int reg_nr)1437 sh_sh2a_register_type (struct gdbarch *gdbarch, int reg_nr)
1438 {
1439   if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
1440        && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
1441     return builtin_type (gdbarch)->builtin_float;
1442   else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
1443     return builtin_type (gdbarch)->builtin_double;
1444   else
1445     return builtin_type (gdbarch)->builtin_int;
1446 }
1447 
1448 /* Return the GDB type object for the "standard" data type
1449    of data in register N.  */
1450 static struct type *
sh_sh3e_register_type(struct gdbarch * gdbarch,int reg_nr)1451 sh_sh3e_register_type (struct gdbarch *gdbarch, int reg_nr)
1452 {
1453   if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
1454        && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
1455     return builtin_type (gdbarch)->builtin_float;
1456   else
1457     return builtin_type (gdbarch)->builtin_int;
1458 }
1459 
1460 static struct type *
sh_sh4_build_float_register_type(struct gdbarch * gdbarch,int high)1461 sh_sh4_build_float_register_type (struct gdbarch *gdbarch, int high)
1462 {
1463   return lookup_array_range_type (builtin_type (gdbarch)->builtin_float,
1464 				  0, high);
1465 }
1466 
1467 static struct type *
sh_sh4_register_type(struct gdbarch * gdbarch,int reg_nr)1468 sh_sh4_register_type (struct gdbarch *gdbarch, int reg_nr)
1469 {
1470   if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
1471        && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
1472     return builtin_type (gdbarch)->builtin_float;
1473   else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
1474     return builtin_type (gdbarch)->builtin_double;
1475   else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
1476     return sh_sh4_build_float_register_type (gdbarch, 3);
1477   else
1478     return builtin_type (gdbarch)->builtin_int;
1479 }
1480 
1481 static struct type *
sh_default_register_type(struct gdbarch * gdbarch,int reg_nr)1482 sh_default_register_type (struct gdbarch *gdbarch, int reg_nr)
1483 {
1484   return builtin_type (gdbarch)->builtin_int;
1485 }
1486 
1487 /* Is a register in a reggroup?
1488    The default code in reggroup.c doesn't identify system registers, some
1489    float registers or any of the vector registers.
1490    TODO: sh2a and dsp registers.  */
1491 static int
sh_register_reggroup_p(struct gdbarch * gdbarch,int regnum,struct reggroup * reggroup)1492 sh_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1493 			struct reggroup *reggroup)
1494 {
1495   if (gdbarch_register_name (gdbarch, regnum) == NULL
1496       || *gdbarch_register_name (gdbarch, regnum) == '\0')
1497     return 0;
1498 
1499   if (reggroup == float_reggroup
1500       && (regnum == FPUL_REGNUM
1501 	  || regnum == FPSCR_REGNUM))
1502     return 1;
1503 
1504   if (regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM)
1505     {
1506       if (reggroup == vector_reggroup || reggroup == float_reggroup)
1507 	return 1;
1508       if (reggroup == general_reggroup)
1509 	return 0;
1510     }
1511 
1512   if (regnum == VBR_REGNUM
1513       || regnum == SR_REGNUM
1514       || regnum == FPSCR_REGNUM
1515       || regnum == SSR_REGNUM
1516       || regnum == SPC_REGNUM)
1517     {
1518       if (reggroup == system_reggroup)
1519 	return 1;
1520       if (reggroup == general_reggroup)
1521 	return 0;
1522     }
1523 
1524   /* The default code can cope with any other registers.  */
1525   return default_register_reggroup_p (gdbarch, regnum, reggroup);
1526 }
1527 
1528 /* On the sh4, the DRi pseudo registers are problematic if the target
1529    is little endian.  When the user writes one of those registers, for
1530    instance with 'set var $dr0=1', we want the double to be stored
1531    like this:
1532    fr0 = 0x00 0x00 0xf0 0x3f
1533    fr1 = 0x00 0x00 0x00 0x00
1534 
1535    This corresponds to little endian byte order & big endian word
1536    order.  However if we let gdb write the register w/o conversion, it
1537    will write fr0 and fr1 this way:
1538    fr0 = 0x00 0x00 0x00 0x00
1539    fr1 = 0x00 0x00 0xf0 0x3f
1540    because it will consider fr0 and fr1 as a single LE stretch of memory.
1541 
1542    To achieve what we want we must force gdb to store things in
1543    floatformat_ieee_double_littlebyte_bigword (which is defined in
1544    include/floatformat.h and libiberty/floatformat.c.
1545 
1546    In case the target is big endian, there is no problem, the
1547    raw bytes will look like:
1548    fr0 = 0x3f 0xf0 0x00 0x00
1549    fr1 = 0x00 0x00 0x00 0x00
1550 
1551    The other pseudo registers (the FVs) also don't pose a problem
1552    because they are stored as 4 individual FP elements.  */
1553 
1554 static struct type *
sh_littlebyte_bigword_type(struct gdbarch * gdbarch)1555 sh_littlebyte_bigword_type (struct gdbarch *gdbarch)
1556 {
1557   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1558 
1559   if (tdep->sh_littlebyte_bigword_type == NULL)
1560     tdep->sh_littlebyte_bigword_type
1561       = arch_float_type (gdbarch, -1, "builtin_type_sh_littlebyte_bigword",
1562                          floatformats_ieee_double_littlebyte_bigword);
1563 
1564   return tdep->sh_littlebyte_bigword_type;
1565 }
1566 
1567 static void
sh_register_convert_to_virtual(struct gdbarch * gdbarch,int regnum,struct type * type,gdb_byte * from,gdb_byte * to)1568 sh_register_convert_to_virtual (struct gdbarch *gdbarch, int regnum,
1569 				struct type *type, gdb_byte *from, gdb_byte *to)
1570 {
1571   if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1572     {
1573       /* It is a no-op.  */
1574       memcpy (to, from, register_size (gdbarch, regnum));
1575       return;
1576     }
1577 
1578   if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
1579     target_float_convert (from, sh_littlebyte_bigword_type (gdbarch),
1580 			  to, type);
1581   else
1582     error
1583       ("sh_register_convert_to_virtual called with non DR register number");
1584 }
1585 
1586 static void
sh_register_convert_to_raw(struct gdbarch * gdbarch,struct type * type,int regnum,const gdb_byte * from,gdb_byte * to)1587 sh_register_convert_to_raw (struct gdbarch *gdbarch, struct type *type,
1588 			    int regnum, const gdb_byte *from, gdb_byte *to)
1589 {
1590   if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1591     {
1592       /* It is a no-op.  */
1593       memcpy (to, from, register_size (gdbarch, regnum));
1594       return;
1595     }
1596 
1597   if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
1598     target_float_convert (from, type,
1599 			  to, sh_littlebyte_bigword_type (gdbarch));
1600   else
1601     error (_("sh_register_convert_to_raw called with non DR register number"));
1602 }
1603 
1604 /* For vectors of 4 floating point registers.  */
1605 static int
fv_reg_base_num(struct gdbarch * gdbarch,int fv_regnum)1606 fv_reg_base_num (struct gdbarch *gdbarch, int fv_regnum)
1607 {
1608   int fp_regnum;
1609 
1610   fp_regnum = gdbarch_fp0_regnum (gdbarch)
1611 	      + (fv_regnum - FV0_REGNUM) * 4;
1612   return fp_regnum;
1613 }
1614 
1615 /* For double precision floating point registers, i.e 2 fp regs.  */
1616 static int
dr_reg_base_num(struct gdbarch * gdbarch,int dr_regnum)1617 dr_reg_base_num (struct gdbarch *gdbarch, int dr_regnum)
1618 {
1619   int fp_regnum;
1620 
1621   fp_regnum = gdbarch_fp0_regnum (gdbarch)
1622 	      + (dr_regnum - DR0_REGNUM) * 2;
1623   return fp_regnum;
1624 }
1625 
1626 /* Concatenate PORTIONS contiguous raw registers starting at
1627    BASE_REGNUM into BUFFER.  */
1628 
1629 static enum register_status
pseudo_register_read_portions(struct gdbarch * gdbarch,readable_regcache * regcache,int portions,int base_regnum,gdb_byte * buffer)1630 pseudo_register_read_portions (struct gdbarch *gdbarch,
1631 			       readable_regcache *regcache,
1632 			       int portions,
1633 			       int base_regnum, gdb_byte *buffer)
1634 {
1635   int portion;
1636 
1637   for (portion = 0; portion < portions; portion++)
1638     {
1639       enum register_status status;
1640       gdb_byte *b;
1641 
1642       b = buffer + register_size (gdbarch, base_regnum) * portion;
1643       status = regcache->raw_read (base_regnum + portion, b);
1644       if (status != REG_VALID)
1645 	return status;
1646     }
1647 
1648   return REG_VALID;
1649 }
1650 
1651 static enum register_status
sh_pseudo_register_read(struct gdbarch * gdbarch,readable_regcache * regcache,int reg_nr,gdb_byte * buffer)1652 sh_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
1653 			 int reg_nr, gdb_byte *buffer)
1654 {
1655   int base_regnum;
1656   enum register_status status;
1657 
1658   if (reg_nr == PSEUDO_BANK_REGNUM)
1659     return regcache->raw_read (BANK_REGNUM, buffer);
1660   else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
1661     {
1662       /* Enough space for two float registers.  */
1663       gdb_byte temp_buffer[4 * 2];
1664       base_regnum = dr_reg_base_num (gdbarch, reg_nr);
1665 
1666       /* Build the value in the provided buffer.  */
1667       /* Read the real regs for which this one is an alias.  */
1668       status = pseudo_register_read_portions (gdbarch, regcache,
1669 					      2, base_regnum, temp_buffer);
1670       if (status == REG_VALID)
1671 	{
1672 	  /* We must pay attention to the endianness. */
1673 	  sh_register_convert_to_virtual (gdbarch, reg_nr,
1674 					  register_type (gdbarch, reg_nr),
1675 					  temp_buffer, buffer);
1676 	}
1677       return status;
1678     }
1679   else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
1680     {
1681       base_regnum = fv_reg_base_num (gdbarch, reg_nr);
1682 
1683       /* Read the real regs for which this one is an alias.  */
1684       return pseudo_register_read_portions (gdbarch, regcache,
1685 					    4, base_regnum, buffer);
1686     }
1687   else
1688     gdb_assert_not_reached ("invalid pseudo register number");
1689 }
1690 
1691 static void
sh_pseudo_register_write(struct gdbarch * gdbarch,struct regcache * regcache,int reg_nr,const gdb_byte * buffer)1692 sh_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1693 			  int reg_nr, const gdb_byte *buffer)
1694 {
1695   int base_regnum, portion;
1696 
1697   if (reg_nr == PSEUDO_BANK_REGNUM)
1698     {
1699       /* When the bank register is written to, the whole register bank
1700          is switched and all values in the bank registers must be read
1701 	 from the target/sim again.  We're just invalidating the regcache
1702 	 so that a re-read happens next time it's necessary.  */
1703       int bregnum;
1704 
1705       regcache->raw_write (BANK_REGNUM, buffer);
1706       for (bregnum = R0_BANK0_REGNUM; bregnum < MACLB_REGNUM; ++bregnum)
1707         regcache->invalidate (bregnum);
1708     }
1709   else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
1710     {
1711       /* Enough space for two float registers.  */
1712       gdb_byte temp_buffer[4 * 2];
1713       base_regnum = dr_reg_base_num (gdbarch, reg_nr);
1714 
1715       /* We must pay attention to the endianness.  */
1716       sh_register_convert_to_raw (gdbarch, register_type (gdbarch, reg_nr),
1717 				  reg_nr, buffer, temp_buffer);
1718 
1719       /* Write the real regs for which this one is an alias.  */
1720       for (portion = 0; portion < 2; portion++)
1721 	regcache->raw_write (base_regnum + portion,
1722 			    (temp_buffer
1723 			     + register_size (gdbarch,
1724 					      base_regnum) * portion));
1725     }
1726   else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
1727     {
1728       base_regnum = fv_reg_base_num (gdbarch, reg_nr);
1729 
1730       /* Write the real regs for which this one is an alias.  */
1731       for (portion = 0; portion < 4; portion++)
1732 	regcache->raw_write (base_regnum + portion,
1733 			    (buffer
1734 			     + register_size (gdbarch,
1735 					      base_regnum) * portion));
1736     }
1737 }
1738 
1739 static int
sh_dsp_register_sim_regno(struct gdbarch * gdbarch,int nr)1740 sh_dsp_register_sim_regno (struct gdbarch *gdbarch, int nr)
1741 {
1742   if (legacy_register_sim_regno (gdbarch, nr) < 0)
1743     return legacy_register_sim_regno (gdbarch, nr);
1744   if (nr >= DSR_REGNUM && nr <= Y1_REGNUM)
1745     return nr - DSR_REGNUM + SIM_SH_DSR_REGNUM;
1746   if (nr == MOD_REGNUM)
1747     return SIM_SH_MOD_REGNUM;
1748   if (nr == RS_REGNUM)
1749     return SIM_SH_RS_REGNUM;
1750   if (nr == RE_REGNUM)
1751     return SIM_SH_RE_REGNUM;
1752   if (nr >= DSP_R0_BANK_REGNUM && nr <= DSP_R7_BANK_REGNUM)
1753     return nr - DSP_R0_BANK_REGNUM + SIM_SH_R0_BANK_REGNUM;
1754   return nr;
1755 }
1756 
1757 static int
sh_sh2a_register_sim_regno(struct gdbarch * gdbarch,int nr)1758 sh_sh2a_register_sim_regno (struct gdbarch *gdbarch, int nr)
1759 {
1760   switch (nr)
1761     {
1762       case TBR_REGNUM:
1763         return SIM_SH_TBR_REGNUM;
1764       case IBNR_REGNUM:
1765         return SIM_SH_IBNR_REGNUM;
1766       case IBCR_REGNUM:
1767         return SIM_SH_IBCR_REGNUM;
1768       case BANK_REGNUM:
1769         return SIM_SH_BANK_REGNUM;
1770       case MACLB_REGNUM:
1771         return SIM_SH_BANK_MACL_REGNUM;
1772       case GBRB_REGNUM:
1773         return SIM_SH_BANK_GBR_REGNUM;
1774       case PRB_REGNUM:
1775         return SIM_SH_BANK_PR_REGNUM;
1776       case IVNB_REGNUM:
1777         return SIM_SH_BANK_IVN_REGNUM;
1778       case MACHB_REGNUM:
1779         return SIM_SH_BANK_MACH_REGNUM;
1780       default:
1781         break;
1782     }
1783   return legacy_register_sim_regno (gdbarch, nr);
1784 }
1785 
1786 /* Set up the register unwinding such that call-clobbered registers are
1787    not displayed in frames >0 because the true value is not certain.
1788    The 'undefined' registers will show up as 'not available' unless the
1789    CFI says otherwise.
1790 
1791    This function is currently set up for SH4 and compatible only.  */
1792 
1793 static void
sh_dwarf2_frame_init_reg(struct gdbarch * gdbarch,int regnum,struct dwarf2_frame_state_reg * reg,struct frame_info * this_frame)1794 sh_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1795                           struct dwarf2_frame_state_reg *reg,
1796 			  struct frame_info *this_frame)
1797 {
1798   /* Mark the PC as the destination for the return address.  */
1799   if (regnum == gdbarch_pc_regnum (gdbarch))
1800     reg->how = DWARF2_FRAME_REG_RA;
1801 
1802   /* Mark the stack pointer as the call frame address.  */
1803   else if (regnum == gdbarch_sp_regnum (gdbarch))
1804     reg->how = DWARF2_FRAME_REG_CFA;
1805 
1806   /* The above was taken from the default init_reg in dwarf2-frame.c
1807      while the below is SH specific.  */
1808 
1809   /* Caller save registers.  */
1810   else if ((regnum >= R0_REGNUM && regnum <= R0_REGNUM+7)
1811 	   || (regnum >= FR0_REGNUM && regnum <= FR0_REGNUM+11)
1812 	   || (regnum >= DR0_REGNUM && regnum <= DR0_REGNUM+5)
1813 	   || (regnum >= FV0_REGNUM && regnum <= FV0_REGNUM+2)
1814 	   || (regnum == MACH_REGNUM)
1815 	   || (regnum == MACL_REGNUM)
1816 	   || (regnum == FPUL_REGNUM)
1817 	   || (regnum == SR_REGNUM))
1818     reg->how = DWARF2_FRAME_REG_UNDEFINED;
1819 
1820   /* Callee save registers.  */
1821   else if ((regnum >= R0_REGNUM+8 && regnum <= R0_REGNUM+15)
1822 	   || (regnum >= FR0_REGNUM+12 && regnum <= FR0_REGNUM+15)
1823 	   || (regnum >= DR0_REGNUM+6 && regnum <= DR0_REGNUM+8)
1824 	   || (regnum == FV0_REGNUM+3))
1825     reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1826 
1827   /* Other registers.  These are not in the ABI and may or may not
1828      mean anything in frames >0 so don't show them.  */
1829   else if ((regnum >= R0_BANK0_REGNUM && regnum <= R0_BANK0_REGNUM+15)
1830 	   || (regnum == GBR_REGNUM)
1831 	   || (regnum == VBR_REGNUM)
1832 	   || (regnum == FPSCR_REGNUM)
1833 	   || (regnum == SSR_REGNUM)
1834 	   || (regnum == SPC_REGNUM))
1835     reg->how = DWARF2_FRAME_REG_UNDEFINED;
1836 }
1837 
1838 static struct sh_frame_cache *
sh_alloc_frame_cache(void)1839 sh_alloc_frame_cache (void)
1840 {
1841   struct sh_frame_cache *cache;
1842   int i;
1843 
1844   cache = FRAME_OBSTACK_ZALLOC (struct sh_frame_cache);
1845 
1846   /* Base address.  */
1847   cache->base = 0;
1848   cache->saved_sp = 0;
1849   cache->sp_offset = 0;
1850   cache->pc = 0;
1851 
1852   /* Frameless until proven otherwise.  */
1853   cache->uses_fp = 0;
1854 
1855   /* Saved registers.  We initialize these to -1 since zero is a valid
1856      offset (that's where fp is supposed to be stored).  */
1857   for (i = 0; i < SH_NUM_REGS; i++)
1858     {
1859       cache->saved_regs[i] = -1;
1860     }
1861 
1862   return cache;
1863 }
1864 
1865 static struct sh_frame_cache *
sh_frame_cache(struct frame_info * this_frame,void ** this_cache)1866 sh_frame_cache (struct frame_info *this_frame, void **this_cache)
1867 {
1868   struct gdbarch *gdbarch = get_frame_arch (this_frame);
1869   struct sh_frame_cache *cache;
1870   CORE_ADDR current_pc;
1871   int i;
1872 
1873   if (*this_cache)
1874     return (struct sh_frame_cache *) *this_cache;
1875 
1876   cache = sh_alloc_frame_cache ();
1877   *this_cache = cache;
1878 
1879   /* In principle, for normal frames, fp holds the frame pointer,
1880      which holds the base address for the current stack frame.
1881      However, for functions that don't need it, the frame pointer is
1882      optional.  For these "frameless" functions the frame pointer is
1883      actually the frame pointer of the calling frame.  */
1884   cache->base = get_frame_register_unsigned (this_frame, FP_REGNUM);
1885   if (cache->base == 0)
1886     return cache;
1887 
1888   cache->pc = get_frame_func (this_frame);
1889   current_pc = get_frame_pc (this_frame);
1890   if (cache->pc != 0)
1891     {
1892       ULONGEST fpscr;
1893 
1894       /* Check for the existence of the FPSCR register.	 If it exists,
1895 	 fetch its value for use in prologue analysis.	Passing a zero
1896 	 value is the best choice for architecture variants upon which
1897 	 there's no FPSCR register.  */
1898       if (gdbarch_register_reggroup_p (gdbarch, FPSCR_REGNUM, all_reggroup))
1899 	fpscr = get_frame_register_unsigned (this_frame, FPSCR_REGNUM);
1900       else
1901 	fpscr = 0;
1902 
1903       sh_analyze_prologue (gdbarch, cache->pc, current_pc, cache, fpscr);
1904     }
1905 
1906   if (!cache->uses_fp)
1907     {
1908       /* We didn't find a valid frame, which means that CACHE->base
1909          currently holds the frame pointer for our calling frame.  If
1910          we're at the start of a function, or somewhere half-way its
1911          prologue, the function's frame probably hasn't been fully
1912          setup yet.  Try to reconstruct the base address for the stack
1913          frame by looking at the stack pointer.  For truly "frameless"
1914          functions this might work too.  */
1915       cache->base = get_frame_register_unsigned
1916 		     (this_frame, gdbarch_sp_regnum (gdbarch));
1917     }
1918 
1919   /* Now that we have the base address for the stack frame we can
1920      calculate the value of sp in the calling frame.  */
1921   cache->saved_sp = cache->base + cache->sp_offset;
1922 
1923   /* Adjust all the saved registers such that they contain addresses
1924      instead of offsets.  */
1925   for (i = 0; i < SH_NUM_REGS; i++)
1926     if (cache->saved_regs[i] != -1)
1927       cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i] - 4;
1928 
1929   return cache;
1930 }
1931 
1932 static struct value *
sh_frame_prev_register(struct frame_info * this_frame,void ** this_cache,int regnum)1933 sh_frame_prev_register (struct frame_info *this_frame,
1934 			void **this_cache, int regnum)
1935 {
1936   struct gdbarch *gdbarch = get_frame_arch (this_frame);
1937   struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
1938 
1939   gdb_assert (regnum >= 0);
1940 
1941   if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
1942     return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
1943 
1944   /* The PC of the previous frame is stored in the PR register of
1945      the current frame.  Frob regnum so that we pull the value from
1946      the correct place.  */
1947   if (regnum == gdbarch_pc_regnum (gdbarch))
1948     regnum = PR_REGNUM;
1949 
1950   if (regnum < SH_NUM_REGS && cache->saved_regs[regnum] != -1)
1951     return frame_unwind_got_memory (this_frame, regnum,
1952                                     cache->saved_regs[regnum]);
1953 
1954   return frame_unwind_got_register (this_frame, regnum, regnum);
1955 }
1956 
1957 static void
sh_frame_this_id(struct frame_info * this_frame,void ** this_cache,struct frame_id * this_id)1958 sh_frame_this_id (struct frame_info *this_frame, void **this_cache,
1959 		  struct frame_id *this_id)
1960 {
1961   struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
1962 
1963   /* This marks the outermost frame.  */
1964   if (cache->base == 0)
1965     return;
1966 
1967   *this_id = frame_id_build (cache->saved_sp, cache->pc);
1968 }
1969 
1970 static const struct frame_unwind sh_frame_unwind = {
1971   NORMAL_FRAME,
1972   default_frame_unwind_stop_reason,
1973   sh_frame_this_id,
1974   sh_frame_prev_register,
1975   NULL,
1976   default_frame_sniffer
1977 };
1978 
1979 static CORE_ADDR
sh_frame_base_address(struct frame_info * this_frame,void ** this_cache)1980 sh_frame_base_address (struct frame_info *this_frame, void **this_cache)
1981 {
1982   struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
1983 
1984   return cache->base;
1985 }
1986 
1987 static const struct frame_base sh_frame_base = {
1988   &sh_frame_unwind,
1989   sh_frame_base_address,
1990   sh_frame_base_address,
1991   sh_frame_base_address
1992 };
1993 
1994 static struct sh_frame_cache *
sh_make_stub_cache(struct frame_info * this_frame)1995 sh_make_stub_cache (struct frame_info *this_frame)
1996 {
1997   struct gdbarch *gdbarch = get_frame_arch (this_frame);
1998   struct sh_frame_cache *cache;
1999 
2000   cache = sh_alloc_frame_cache ();
2001 
2002   cache->saved_sp
2003     = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
2004 
2005   return cache;
2006 }
2007 
2008 static void
sh_stub_this_id(struct frame_info * this_frame,void ** this_cache,struct frame_id * this_id)2009 sh_stub_this_id (struct frame_info *this_frame, void **this_cache,
2010                  struct frame_id *this_id)
2011 {
2012   struct sh_frame_cache *cache;
2013 
2014   if (*this_cache == NULL)
2015     *this_cache = sh_make_stub_cache (this_frame);
2016   cache = (struct sh_frame_cache *) *this_cache;
2017 
2018   *this_id = frame_id_build (cache->saved_sp, get_frame_pc (this_frame));
2019 }
2020 
2021 static int
sh_stub_unwind_sniffer(const struct frame_unwind * self,struct frame_info * this_frame,void ** this_prologue_cache)2022 sh_stub_unwind_sniffer (const struct frame_unwind *self,
2023                         struct frame_info *this_frame,
2024                         void **this_prologue_cache)
2025 {
2026   CORE_ADDR addr_in_block;
2027 
2028   addr_in_block = get_frame_address_in_block (this_frame);
2029   if (in_plt_section (addr_in_block))
2030     return 1;
2031 
2032   return 0;
2033 }
2034 
2035 static const struct frame_unwind sh_stub_unwind =
2036 {
2037   NORMAL_FRAME,
2038   default_frame_unwind_stop_reason,
2039   sh_stub_this_id,
2040   sh_frame_prev_register,
2041   NULL,
2042   sh_stub_unwind_sniffer
2043 };
2044 
2045 /* Implement the stack_frame_destroyed_p gdbarch method.
2046 
2047    The epilogue is defined here as the area at the end of a function,
2048    either on the `ret' instruction itself or after an instruction which
2049    destroys the function's stack frame.  */
2050 
2051 static int
sh_stack_frame_destroyed_p(struct gdbarch * gdbarch,CORE_ADDR pc)2052 sh_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2053 {
2054   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2055   CORE_ADDR func_addr = 0, func_end = 0;
2056 
2057   if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
2058     {
2059       ULONGEST inst;
2060       /* The sh epilogue is max. 14 bytes long.  Give another 14 bytes
2061          for a nop and some fixed data (e.g. big offsets) which are
2062          unfortunately also treated as part of the function (which
2063          means, they are below func_end.  */
2064       CORE_ADDR addr = func_end - 28;
2065       if (addr < func_addr + 4)
2066 	addr = func_addr + 4;
2067       if (pc < addr)
2068 	return 0;
2069 
2070       /* First search forward until hitting an rts.  */
2071       while (addr < func_end
2072 	     && !IS_RTS (read_memory_unsigned_integer (addr, 2, byte_order)))
2073 	addr += 2;
2074       if (addr >= func_end)
2075 	return 0;
2076 
2077       /* At this point we should find a mov.l @r15+,r14 instruction,
2078          either before or after the rts.  If not, then the function has
2079          probably no "normal" epilogue and we bail out here.  */
2080       inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2081       if (IS_RESTORE_FP (read_memory_unsigned_integer (addr - 2, 2,
2082 						       byte_order)))
2083 	addr -= 2;
2084       else if (!IS_RESTORE_FP (read_memory_unsigned_integer (addr + 2, 2,
2085 							     byte_order)))
2086 	return 0;
2087 
2088       inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2089 
2090       /* Step over possible lds.l @r15+,macl.  */
2091       if (IS_MACL_LDS (inst))
2092 	{
2093 	  addr -= 2;
2094 	  inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2095 	}
2096 
2097       /* Step over possible lds.l @r15+,pr.  */
2098       if (IS_LDS (inst))
2099 	{
2100 	  addr -= 2;
2101 	  inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2102 	}
2103 
2104       /* Step over possible mov r14,r15.  */
2105       if (IS_MOV_FP_SP (inst))
2106 	{
2107 	  addr -= 2;
2108 	  inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2109 	}
2110 
2111       /* Now check for FP adjustments, using add #imm,r14 or add rX, r14
2112          instructions.  */
2113       while (addr > func_addr + 4
2114 	     && (IS_ADD_REG_TO_FP (inst) || IS_ADD_IMM_FP (inst)))
2115 	{
2116 	  addr -= 2;
2117 	  inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2118 	}
2119 
2120       /* On SH2a check if the previous instruction was perhaps a MOVI20.
2121          That's allowed for the epilogue.  */
2122       if ((gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_sh2a
2123            || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_sh2a_nofpu)
2124           && addr > func_addr + 6
2125 	  && IS_MOVI20 (read_memory_unsigned_integer (addr - 4, 2,
2126 						      byte_order)))
2127 	addr -= 4;
2128 
2129       if (pc >= addr)
2130 	return 1;
2131     }
2132   return 0;
2133 }
2134 
2135 
2136 /* Supply register REGNUM from the buffer specified by REGS and LEN
2137    in the register set REGSET to register cache REGCACHE.
2138    REGTABLE specifies where each register can be found in REGS.
2139    If REGNUM is -1, do this for all registers in REGSET.  */
2140 
2141 void
sh_corefile_supply_regset(const struct regset * regset,struct regcache * regcache,int regnum,const void * regs,size_t len)2142 sh_corefile_supply_regset (const struct regset *regset,
2143 			   struct regcache *regcache,
2144 			   int regnum, const void *regs, size_t len)
2145 {
2146   struct gdbarch *gdbarch = regcache->arch ();
2147   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2148   const struct sh_corefile_regmap *regmap = (regset == &sh_corefile_gregset
2149 					     ? tdep->core_gregmap
2150 					     : tdep->core_fpregmap);
2151   int i;
2152 
2153   for (i = 0; regmap[i].regnum != -1; i++)
2154     {
2155       if ((regnum == -1 || regnum == regmap[i].regnum)
2156 	  && regmap[i].offset + 4 <= len)
2157 	regcache->raw_supply
2158 	  (regmap[i].regnum, (char *) regs + regmap[i].offset);
2159     }
2160 }
2161 
2162 /* Collect register REGNUM in the register set REGSET from register cache
2163    REGCACHE into the buffer specified by REGS and LEN.
2164    REGTABLE specifies where each register can be found in REGS.
2165    If REGNUM is -1, do this for all registers in REGSET.  */
2166 
2167 void
sh_corefile_collect_regset(const struct regset * regset,const struct regcache * regcache,int regnum,void * regs,size_t len)2168 sh_corefile_collect_regset (const struct regset *regset,
2169 			    const struct regcache *regcache,
2170 			    int regnum, void *regs, size_t len)
2171 {
2172   struct gdbarch *gdbarch = regcache->arch ();
2173   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2174   const struct sh_corefile_regmap *regmap = (regset == &sh_corefile_gregset
2175 					     ? tdep->core_gregmap
2176 					     : tdep->core_fpregmap);
2177   int i;
2178 
2179   for (i = 0; regmap[i].regnum != -1; i++)
2180     {
2181       if ((regnum == -1 || regnum == regmap[i].regnum)
2182 	  && regmap[i].offset + 4 <= len)
2183 	regcache->raw_collect (regmap[i].regnum,
2184 			      (char *)regs + regmap[i].offset);
2185     }
2186 }
2187 
2188 /* The following two regsets have the same contents, so it is tempting to
2189    unify them, but they are distiguished by their address, so don't.  */
2190 
2191 const struct regset sh_corefile_gregset =
2192 {
2193   NULL,
2194   sh_corefile_supply_regset,
2195   sh_corefile_collect_regset
2196 };
2197 
2198 static const struct regset sh_corefile_fpregset =
2199 {
2200   NULL,
2201   sh_corefile_supply_regset,
2202   sh_corefile_collect_regset
2203 };
2204 
2205 static void
sh_iterate_over_regset_sections(struct gdbarch * gdbarch,iterate_over_regset_sections_cb * cb,void * cb_data,const struct regcache * regcache)2206 sh_iterate_over_regset_sections (struct gdbarch *gdbarch,
2207 				 iterate_over_regset_sections_cb *cb,
2208 				 void *cb_data,
2209 				 const struct regcache *regcache)
2210 {
2211   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2212 
2213   if (tdep->core_gregmap != NULL)
2214     cb (".reg", tdep->sizeof_gregset, tdep->sizeof_gregset,
2215 	&sh_corefile_gregset, NULL, cb_data);
2216 
2217   if (tdep->core_fpregmap != NULL)
2218     cb (".reg2", tdep->sizeof_fpregset, tdep->sizeof_fpregset,
2219 	&sh_corefile_fpregset, NULL, cb_data);
2220 }
2221 
2222 /* This is the implementation of gdbarch method
2223    return_in_first_hidden_param_p.  */
2224 
2225 static int
sh_return_in_first_hidden_param_p(struct gdbarch * gdbarch,struct type * type)2226 sh_return_in_first_hidden_param_p (struct gdbarch *gdbarch,
2227 				     struct type *type)
2228 {
2229   return 0;
2230 }
2231 
2232 
2233 
2234 static struct gdbarch *
sh_gdbarch_init(struct gdbarch_info info,struct gdbarch_list * arches)2235 sh_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2236 {
2237   struct gdbarch *gdbarch;
2238   struct gdbarch_tdep *tdep;
2239 
2240   /* If there is already a candidate, use it.  */
2241   arches = gdbarch_list_lookup_by_info (arches, &info);
2242   if (arches != NULL)
2243     return arches->gdbarch;
2244 
2245   /* None found, create a new architecture from the information
2246      provided.  */
2247   tdep = XCNEW (struct gdbarch_tdep);
2248   gdbarch = gdbarch_alloc (&info, tdep);
2249 
2250   set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2251   set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2252   set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2253   set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2254 
2255   set_gdbarch_wchar_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2256   set_gdbarch_wchar_signed (gdbarch, 0);
2257 
2258   set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2259   set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2260   set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2261   set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2262 
2263   set_gdbarch_num_regs (gdbarch, SH_NUM_REGS);
2264   set_gdbarch_sp_regnum (gdbarch, 15);
2265   set_gdbarch_pc_regnum (gdbarch, 16);
2266   set_gdbarch_fp0_regnum (gdbarch, -1);
2267   set_gdbarch_num_pseudo_regs (gdbarch, 0);
2268 
2269   set_gdbarch_register_type (gdbarch, sh_default_register_type);
2270   set_gdbarch_register_reggroup_p (gdbarch, sh_register_reggroup_p);
2271 
2272   set_gdbarch_breakpoint_kind_from_pc (gdbarch, sh_breakpoint_kind_from_pc);
2273   set_gdbarch_sw_breakpoint_from_kind (gdbarch, sh_sw_breakpoint_from_kind);
2274 
2275   set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
2276 
2277   set_gdbarch_return_value (gdbarch, sh_return_value_nofpu);
2278 
2279   set_gdbarch_skip_prologue (gdbarch, sh_skip_prologue);
2280   set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2281 
2282   set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_nofpu);
2283   set_gdbarch_return_in_first_hidden_param_p (gdbarch,
2284 					      sh_return_in_first_hidden_param_p);
2285 
2286   set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2287 
2288   set_gdbarch_frame_align (gdbarch, sh_frame_align);
2289   frame_base_set_default (gdbarch, &sh_frame_base);
2290 
2291   set_gdbarch_stack_frame_destroyed_p (gdbarch, sh_stack_frame_destroyed_p);
2292 
2293   dwarf2_frame_set_init_reg (gdbarch, sh_dwarf2_frame_init_reg);
2294 
2295   set_gdbarch_iterate_over_regset_sections
2296     (gdbarch, sh_iterate_over_regset_sections);
2297 
2298   switch (info.bfd_arch_info->mach)
2299     {
2300     case bfd_mach_sh:
2301       set_gdbarch_register_name (gdbarch, sh_sh_register_name);
2302       break;
2303 
2304     case bfd_mach_sh2:
2305       set_gdbarch_register_name (gdbarch, sh_sh_register_name);
2306       break;
2307 
2308     case bfd_mach_sh2e:
2309       /* doubles on sh2e and sh3e are actually 4 byte.  */
2310       set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2311       set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
2312 
2313       set_gdbarch_register_name (gdbarch, sh_sh2e_register_name);
2314       set_gdbarch_register_type (gdbarch, sh_sh3e_register_type);
2315       set_gdbarch_fp0_regnum (gdbarch, 25);
2316       set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
2317       set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2318       break;
2319 
2320     case bfd_mach_sh2a:
2321       set_gdbarch_register_name (gdbarch, sh_sh2a_register_name);
2322       set_gdbarch_register_type (gdbarch, sh_sh2a_register_type);
2323       set_gdbarch_register_sim_regno (gdbarch, sh_sh2a_register_sim_regno);
2324 
2325       set_gdbarch_fp0_regnum (gdbarch, 25);
2326       set_gdbarch_num_pseudo_regs (gdbarch, 9);
2327       set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2328       set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
2329       set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
2330       set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2331       break;
2332 
2333     case bfd_mach_sh2a_nofpu:
2334       set_gdbarch_register_name (gdbarch, sh_sh2a_nofpu_register_name);
2335       set_gdbarch_register_sim_regno (gdbarch, sh_sh2a_register_sim_regno);
2336 
2337       set_gdbarch_num_pseudo_regs (gdbarch, 1);
2338       set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2339       set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
2340       break;
2341 
2342     case bfd_mach_sh_dsp:
2343       set_gdbarch_register_name (gdbarch, sh_sh_dsp_register_name);
2344       set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
2345       break;
2346 
2347     case bfd_mach_sh3:
2348     case bfd_mach_sh3_nommu:
2349     case bfd_mach_sh2a_nofpu_or_sh3_nommu:
2350       set_gdbarch_register_name (gdbarch, sh_sh3_register_name);
2351       break;
2352 
2353     case bfd_mach_sh3e:
2354     case bfd_mach_sh2a_or_sh3e:
2355       /* doubles on sh2e and sh3e are actually 4 byte.  */
2356       set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2357       set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
2358 
2359       set_gdbarch_register_name (gdbarch, sh_sh3e_register_name);
2360       set_gdbarch_register_type (gdbarch, sh_sh3e_register_type);
2361       set_gdbarch_fp0_regnum (gdbarch, 25);
2362       set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
2363       set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2364       break;
2365 
2366     case bfd_mach_sh3_dsp:
2367       set_gdbarch_register_name (gdbarch, sh_sh3_dsp_register_name);
2368       set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
2369       break;
2370 
2371     case bfd_mach_sh4:
2372     case bfd_mach_sh4a:
2373     case bfd_mach_sh2a_or_sh4:
2374       set_gdbarch_register_name (gdbarch, sh_sh4_register_name);
2375       set_gdbarch_register_type (gdbarch, sh_sh4_register_type);
2376       set_gdbarch_fp0_regnum (gdbarch, 25);
2377       set_gdbarch_num_pseudo_regs (gdbarch, 13);
2378       set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2379       set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
2380       set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
2381       set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2382       break;
2383 
2384     case bfd_mach_sh4_nofpu:
2385     case bfd_mach_sh4a_nofpu:
2386     case bfd_mach_sh4_nommu_nofpu:
2387     case bfd_mach_sh2a_nofpu_or_sh4_nommu_nofpu:
2388       set_gdbarch_register_name (gdbarch, sh_sh4_nofpu_register_name);
2389       break;
2390 
2391     case bfd_mach_sh4al_dsp:
2392       set_gdbarch_register_name (gdbarch, sh_sh4al_dsp_register_name);
2393       set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
2394       break;
2395 
2396     default:
2397       set_gdbarch_register_name (gdbarch, sh_sh_register_name);
2398       break;
2399     }
2400 
2401   /* Hook in ABI-specific overrides, if they have been registered.  */
2402   gdbarch_init_osabi (info, gdbarch);
2403 
2404   dwarf2_append_unwinders (gdbarch);
2405   frame_unwind_append_unwinder (gdbarch, &sh_stub_unwind);
2406   frame_unwind_append_unwinder (gdbarch, &sh_frame_unwind);
2407 
2408   return gdbarch;
2409 }
2410 
2411 void _initialize_sh_tdep ();
2412 void
_initialize_sh_tdep()2413 _initialize_sh_tdep ()
2414 {
2415   gdbarch_register (bfd_arch_sh, sh_gdbarch_init, NULL);
2416 
2417   add_basic_prefix_cmd ("sh", no_class, "SH specific commands.",
2418 			&setshcmdlist, "set sh ", 0, &setlist);
2419   add_show_prefix_cmd ("sh", no_class, "SH specific commands.",
2420 		       &showshcmdlist, "show sh ", 0, &showlist);
2421 
2422   add_setshow_enum_cmd ("calling-convention", class_vars, sh_cc_enum,
2423 			&sh_active_calling_convention,
2424 			_("Set calling convention used when calling target "
2425 			  "functions from GDB."),
2426 			_("Show calling convention used when calling target "
2427 			  "functions from GDB."),
2428 			_("gcc       - Use GCC calling convention (default).\n"
2429 			  "renesas   - Enforce Renesas calling convention."),
2430 			NULL, NULL,
2431 			&setshcmdlist, &showshcmdlist);
2432 }
2433