xref: /openbsd/sys/dev/pci/if_vge.c (revision 0f9891f1)
1 /*	$OpenBSD: if_vge.c,v 1.78 2024/05/24 06:02:57 jsg Exp $	*/
2 /*	$FreeBSD: if_vge.c,v 1.3 2004/09/11 22:13:25 wpaul Exp $	*/
3 /*
4  * Copyright (c) 2004
5  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
37  *
38  * Written by Bill Paul <wpaul@windriver.com>
39  * Senior Networking Software Engineer
40  * Wind River Systems
41  *
42  * Ported to OpenBSD by Peter Valchev <pvalchev@openbsd.org>
43  */
44 
45 /*
46  * The VIA Networking VT6122 is a 32bit, 33/66MHz PCI device that
47  * combines a tri-speed ethernet MAC and PHY, with the following
48  * features:
49  *
50  *	o Jumbo frame support up to 16K
51  *	o Transmit and receive flow control
52  *	o IPv4 checksum offload
53  *	o VLAN tag insertion and stripping
54  *	o TCP large send
55  *	o 64-bit multicast hash table filter
56  *	o 64 entry CAM filter
57  *	o 16K RX FIFO and 48K TX FIFO memory
58  *	o Interrupt moderation
59  *
60  * The VT6122 supports up to four transmit DMA queues. The descriptors
61  * in the transmit ring can address up to 7 data fragments; frames which
62  * span more than 7 data buffers must be coalesced, but in general the
63  * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
64  * long. The receive descriptors address only a single buffer.
65  *
66  * There are two peculiar design issues with the VT6122. One is that
67  * receive data buffers must be aligned on a 32-bit boundary. This is
68  * not a problem where the VT6122 is used as a LOM device in x86-based
69  * systems, but on architectures that generate unaligned access traps, we
70  * have to do some copying.
71  *
72  * The other issue has to do with the way 64-bit addresses are handled.
73  * The DMA descriptors only allow you to specify 48 bits of addressing
74  * information. The remaining 16 bits are specified using one of the
75  * I/O registers. If you only have a 32-bit system, then this isn't
76  * an issue, but if you have a 64-bit system and more than 4GB of
77  * memory, you must have to make sure your network data buffers reside
78  * in the same 48-bit 'segment.'
79  *
80  * Special thanks to Ryan Fu at VIA Networking for providing documentation
81  * and sample NICs for testing.
82  */
83 
84 #include "bpfilter.h"
85 #include "vlan.h"
86 
87 #include <sys/param.h>
88 #include <sys/endian.h>
89 #include <sys/systm.h>
90 #include <sys/sockio.h>
91 #include <sys/mbuf.h>
92 #include <sys/device.h>
93 #include <sys/timeout.h>
94 
95 #include <net/if.h>
96 #include <net/if_media.h>
97 
98 #include <netinet/in.h>
99 #include <netinet/if_ether.h>
100 
101 #if NBPFILTER > 0
102 #include <net/bpf.h>
103 #endif
104 
105 #include <dev/mii/miivar.h>
106 
107 #include <dev/pci/pcireg.h>
108 #include <dev/pci/pcivar.h>
109 #include <dev/pci/pcidevs.h>
110 
111 #include <dev/pci/if_vgereg.h>
112 #include <dev/pci/if_vgevar.h>
113 
114 int vge_probe		(struct device *, void *, void *);
115 void vge_attach		(struct device *, struct device *, void *);
116 int vge_detach		(struct device *, int);
117 
118 int vge_encap		(struct vge_softc *, struct mbuf *, int);
119 
120 int vge_allocmem		(struct vge_softc *);
121 void vge_freemem	(struct vge_softc *);
122 int vge_newbuf		(struct vge_softc *, int, struct mbuf *);
123 int vge_rx_list_init	(struct vge_softc *);
124 int vge_tx_list_init	(struct vge_softc *);
125 void vge_rxeof		(struct vge_softc *);
126 void vge_txeof		(struct vge_softc *);
127 int vge_intr		(void *);
128 void vge_tick		(void *);
129 void vge_start		(struct ifnet *);
130 int vge_ioctl		(struct ifnet *, u_long, caddr_t);
131 int vge_init		(struct ifnet *);
132 void vge_stop		(struct vge_softc *);
133 void vge_watchdog	(struct ifnet *);
134 int vge_ifmedia_upd	(struct ifnet *);
135 void vge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
136 
137 #ifdef VGE_EEPROM
138 void vge_eeprom_getword	(struct vge_softc *, int, u_int16_t *);
139 #endif
140 void vge_read_eeprom	(struct vge_softc *, caddr_t, int, int, int);
141 
142 void vge_miipoll_start	(struct vge_softc *);
143 void vge_miipoll_stop	(struct vge_softc *);
144 int vge_miibus_readreg	(struct device *, int, int);
145 void vge_miibus_writereg (struct device *, int, int, int);
146 void vge_miibus_statchg	(struct device *);
147 
148 void vge_cam_clear	(struct vge_softc *);
149 int vge_cam_set		(struct vge_softc *, uint8_t *);
150 void vge_iff		(struct vge_softc *);
151 void vge_reset		(struct vge_softc *);
152 
153 const struct cfattach vge_ca = {
154 	sizeof(struct vge_softc), vge_probe, vge_attach, vge_detach
155 };
156 
157 struct cfdriver vge_cd = {
158 	NULL, "vge", DV_IFNET
159 };
160 
161 #define VGE_PCI_LOIO             0x10
162 #define VGE_PCI_LOMEM            0x14
163 
164 int vge_debug = 0;
165 #define DPRINTF(x)	if (vge_debug) printf x
166 #define DPRINTFN(n, x)	if (vge_debug >= (n)) printf x
167 
168 const struct pci_matchid vge_devices[] = {
169 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT612X },
170 };
171 
172 #ifdef VGE_EEPROM
173 /*
174  * Read a word of data stored in the EEPROM at address 'addr.'
175  */
176 void
vge_eeprom_getword(struct vge_softc * sc,int addr,u_int16_t * dest)177 vge_eeprom_getword(struct vge_softc *sc, int addr, u_int16_t *dest)
178 {
179 	int			i;
180 	u_int16_t		word = 0;
181 
182 	/*
183 	 * Enter EEPROM embedded programming mode. In order to
184 	 * access the EEPROM at all, we first have to set the
185 	 * EELOAD bit in the CHIPCFG2 register.
186 	 */
187 	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
188 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
189 
190 	/* Select the address of the word we want to read */
191 	CSR_WRITE_1(sc, VGE_EEADDR, addr);
192 
193 	/* Issue read command */
194 	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
195 
196 	/* Wait for the done bit to be set. */
197 	for (i = 0; i < VGE_TIMEOUT; i++) {
198 		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
199 			break;
200 	}
201 
202 	if (i == VGE_TIMEOUT) {
203 		printf("%s: EEPROM read timed out\n", sc->vge_dev.dv_xname);
204 		*dest = 0;
205 		return;
206 	}
207 
208 	/* Read the result */
209 	word = CSR_READ_2(sc, VGE_EERDDAT);
210 
211 	/* Turn off EEPROM access mode. */
212 	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
213 	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
214 
215 	*dest = word;
216 }
217 #endif
218 
219 /*
220  * Read a sequence of words from the EEPROM.
221  */
222 void
vge_read_eeprom(struct vge_softc * sc,caddr_t dest,int off,int cnt,int swap)223 vge_read_eeprom(struct vge_softc *sc, caddr_t dest, int off, int cnt,
224     int swap)
225 {
226 	int			i;
227 #ifdef VGE_EEPROM
228 	u_int16_t		word = 0, *ptr;
229 
230 	for (i = 0; i < cnt; i++) {
231 		vge_eeprom_getword(sc, off + i, &word);
232 		ptr = (u_int16_t *)(dest + (i * 2));
233 		if (swap)
234 			*ptr = ntohs(word);
235 		else
236 			*ptr = word;
237 	}
238 #else
239 	for (i = 0; i < ETHER_ADDR_LEN; i++)
240 		dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
241 #endif
242 }
243 
244 void
vge_miipoll_stop(struct vge_softc * sc)245 vge_miipoll_stop(struct vge_softc *sc)
246 {
247 	int			i;
248 
249 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
250 
251 	for (i = 0; i < VGE_TIMEOUT; i++) {
252 		DELAY(1);
253 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
254 			break;
255 	}
256 
257 	if (i == VGE_TIMEOUT)
258 		printf("%s: failed to idle MII autopoll\n", sc->vge_dev.dv_xname);
259 }
260 
261 void
vge_miipoll_start(struct vge_softc * sc)262 vge_miipoll_start(struct vge_softc *sc)
263 {
264 	int			i;
265 
266 	/* First, make sure we're idle. */
267 
268 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
269 	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
270 
271 	for (i = 0; i < VGE_TIMEOUT; i++) {
272 		DELAY(1);
273 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
274 			break;
275 	}
276 
277 	if (i == VGE_TIMEOUT) {
278 		printf("%s: failed to idle MII autopoll\n", sc->vge_dev.dv_xname);
279 		return;
280 	}
281 
282 	/* Now enable auto poll mode. */
283 
284 	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
285 
286 	/* And make sure it started. */
287 
288 	for (i = 0; i < VGE_TIMEOUT; i++) {
289 		DELAY(1);
290 		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
291 			break;
292 	}
293 
294 	if (i == VGE_TIMEOUT)
295 		printf("%s: failed to start MII autopoll\n", sc->vge_dev.dv_xname);
296 }
297 
298 int
vge_miibus_readreg(struct device * dev,int phy,int reg)299 vge_miibus_readreg(struct device *dev, int phy, int reg)
300 {
301 	struct vge_softc	*sc = (struct vge_softc *)dev;
302 	int			i, s;
303 	u_int16_t		rval = 0;
304 
305 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
306 		return(0);
307 
308 	s = splnet();
309 
310 	vge_miipoll_stop(sc);
311 
312 	/* Specify the register we want to read. */
313 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
314 
315 	/* Issue read command. */
316 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
317 
318 	/* Wait for the read command bit to self-clear. */
319 	for (i = 0; i < VGE_TIMEOUT; i++) {
320 		DELAY(1);
321 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
322 			break;
323 	}
324 
325 	if (i == VGE_TIMEOUT)
326 		printf("%s: MII read timed out\n", sc->vge_dev.dv_xname);
327 	else
328 		rval = CSR_READ_2(sc, VGE_MIIDATA);
329 
330 	vge_miipoll_start(sc);
331 	splx(s);
332 
333 	return (rval);
334 }
335 
336 void
vge_miibus_writereg(struct device * dev,int phy,int reg,int data)337 vge_miibus_writereg(struct device *dev, int phy, int reg, int data)
338 {
339 	struct vge_softc	*sc = (struct vge_softc *)dev;
340 	int			i, s;
341 
342 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
343 		return;
344 
345 	s = splnet();
346 	vge_miipoll_stop(sc);
347 
348 	/* Specify the register we want to write. */
349 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
350 
351 	/* Specify the data we want to write. */
352 	CSR_WRITE_2(sc, VGE_MIIDATA, data);
353 
354 	/* Issue write command. */
355 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
356 
357 	/* Wait for the write command bit to self-clear. */
358 	for (i = 0; i < VGE_TIMEOUT; i++) {
359 		DELAY(1);
360 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
361 			break;
362 	}
363 
364 	if (i == VGE_TIMEOUT) {
365 		printf("%s: MII write timed out\n", sc->vge_dev.dv_xname);
366 	}
367 
368 	vge_miipoll_start(sc);
369 	splx(s);
370 }
371 
372 void
vge_cam_clear(struct vge_softc * sc)373 vge_cam_clear(struct vge_softc *sc)
374 {
375 	int			i;
376 
377 	/*
378 	 * Turn off all the mask bits. This tells the chip
379 	 * that none of the entries in the CAM filter are valid.
380 	 * desired entries will be enabled as we fill the filter in.
381 	 */
382 
383 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
384 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
385 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
386 	for (i = 0; i < 8; i++)
387 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
388 
389 	/* Clear the VLAN filter too. */
390 
391 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
392 	for (i = 0; i < 8; i++)
393 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
394 
395 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
396 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
397 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
398 
399 	sc->vge_camidx = 0;
400 }
401 
402 int
vge_cam_set(struct vge_softc * sc,uint8_t * addr)403 vge_cam_set(struct vge_softc *sc, uint8_t *addr)
404 {
405 	int			i, error = 0;
406 
407 	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
408 		return(ENOSPC);
409 
410 	/* Select the CAM data page. */
411 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
412 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
413 
414 	/* Set the filter entry we want to update and enable writing. */
415 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
416 
417 	/* Write the address to the CAM registers */
418 	for (i = 0; i < ETHER_ADDR_LEN; i++)
419 		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
420 
421 	/* Issue a write command. */
422 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
423 
424 	/* Wake for it to clear. */
425 	for (i = 0; i < VGE_TIMEOUT; i++) {
426 		DELAY(1);
427 		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
428 			break;
429 	}
430 
431 	if (i == VGE_TIMEOUT) {
432 		printf("%s: setting CAM filter failed\n", sc->vge_dev.dv_xname);
433 		error = EIO;
434 		goto fail;
435 	}
436 
437 	/* Select the CAM mask page. */
438 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
439 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
440 
441 	/* Set the mask bit that enables this filter. */
442 	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
443 	    1<<(sc->vge_camidx & 7));
444 
445 	sc->vge_camidx++;
446 
447 fail:
448 	/* Turn off access to CAM. */
449 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
450 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
451 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
452 
453 	return (error);
454 }
455 
456 /*
457  * We use the 64-entry CAM filter for perfect filtering.
458  * If there's more than 64 multicast addresses, we use the
459  * hash filter instead.
460  */
461 void
vge_iff(struct vge_softc * sc)462 vge_iff(struct vge_softc *sc)
463 {
464 	struct arpcom		*ac = &sc->arpcom;
465 	struct ifnet		*ifp = &ac->ac_if;
466 	struct ether_multi	*enm;
467 	struct ether_multistep	step;
468 	u_int32_t		h = 0, hashes[2];
469 	u_int8_t		rxctl;
470 	int			error;
471 
472 	vge_cam_clear(sc);
473 	rxctl = CSR_READ_1(sc, VGE_RXCTL);
474 	rxctl &= ~(VGE_RXCTL_RX_BCAST | VGE_RXCTL_RX_MCAST |
475 	    VGE_RXCTL_RX_PROMISC | VGE_RXCTL_RX_UCAST);
476 	bzero(hashes, sizeof(hashes));
477 	ifp->if_flags &= ~IFF_ALLMULTI;
478 
479 	/*
480 	 * Always accept broadcast frames.
481 	 * Always accept frames destined to our station address.
482 	 */
483 	rxctl |= VGE_RXCTL_RX_BCAST | VGE_RXCTL_RX_UCAST;
484 
485 	if ((ifp->if_flags & IFF_PROMISC) == 0)
486 		rxctl |= VGE_RXCTL_RX_MCAST;
487 
488 	if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
489 		ifp->if_flags |= IFF_ALLMULTI;
490 		if (ifp->if_flags & IFF_PROMISC)
491 			rxctl |= VGE_RXCTL_RX_PROMISC;
492 		hashes[0] = hashes[1] = 0xFFFFFFFF;
493 	} else if (ac->ac_multicnt > VGE_CAM_MAXADDRS) {
494 		ETHER_FIRST_MULTI(step, ac, enm);
495 		while (enm != NULL) {
496 			h = ether_crc32_be(enm->enm_addrlo,
497 			    ETHER_ADDR_LEN) >> 26;
498 
499 			hashes[h >> 5] |= 1 << (h & 0x1f);
500 
501 			ETHER_NEXT_MULTI(step, enm);
502 		}
503 	} else {
504 		ETHER_FIRST_MULTI(step, ac, enm);
505 		while (enm != NULL) {
506 			error = vge_cam_set(sc, enm->enm_addrlo);
507 			if (error)
508 				break;
509 
510 			ETHER_NEXT_MULTI(step, enm);
511 		}
512 	}
513 
514 	CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
515 	CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
516 	CSR_WRITE_1(sc, VGE_RXCTL, rxctl);
517 }
518 
519 void
vge_reset(struct vge_softc * sc)520 vge_reset(struct vge_softc *sc)
521 {
522 	int			i;
523 
524 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
525 
526 	for (i = 0; i < VGE_TIMEOUT; i++) {
527 		DELAY(5);
528 		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
529 			break;
530 	}
531 
532 	if (i == VGE_TIMEOUT) {
533 		printf("%s: soft reset timed out", sc->vge_dev.dv_xname);
534 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
535 		DELAY(2000);
536 	}
537 
538 	DELAY(5000);
539 
540 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
541 
542 	for (i = 0; i < VGE_TIMEOUT; i++) {
543 		DELAY(5);
544 		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
545 			break;
546 	}
547 
548 	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
549 }
550 
551 /*
552  * Probe for a VIA gigabit chip. Check the PCI vendor and device
553  * IDs against our list and return a device name if we find a match.
554  */
555 int
vge_probe(struct device * dev,void * match,void * aux)556 vge_probe(struct device *dev, void *match, void *aux)
557 {
558 	return (pci_matchbyid((struct pci_attach_args *)aux, vge_devices,
559 	    nitems(vge_devices)));
560 }
561 
562 /*
563  * Allocate memory for RX/TX rings
564  */
565 int
vge_allocmem(struct vge_softc * sc)566 vge_allocmem(struct vge_softc *sc)
567 {
568 	int			nseg, rseg;
569 	int			i, error;
570 
571 	nseg = 32;
572 
573 	/* Allocate DMA'able memory for the TX ring */
574 
575 	error = bus_dmamap_create(sc->sc_dmat, VGE_TX_LIST_SZ, 1,
576 	    VGE_TX_LIST_SZ, 0, BUS_DMA_ALLOCNOW,
577 	    &sc->vge_ldata.vge_tx_list_map);
578 	if (error)
579 		return (ENOMEM);
580 	error = bus_dmamem_alloc(sc->sc_dmat, VGE_TX_LIST_SZ,
581 	    ETHER_ALIGN, 0,
582 	    &sc->vge_ldata.vge_tx_listseg, 1, &rseg, BUS_DMA_NOWAIT);
583 	if (error) {
584 		printf("%s: can't alloc TX list\n", sc->vge_dev.dv_xname);
585 		return (ENOMEM);
586 	}
587 
588 	/* Load the map for the TX ring. */
589 	error = bus_dmamem_map(sc->sc_dmat, &sc->vge_ldata.vge_tx_listseg,
590 	     1, VGE_TX_LIST_SZ,
591 	     (caddr_t *)&sc->vge_ldata.vge_tx_list, BUS_DMA_NOWAIT);
592 	memset(sc->vge_ldata.vge_tx_list, 0, VGE_TX_LIST_SZ);
593 	if (error) {
594 		printf("%s: can't map TX dma buffers\n",
595 		    sc->vge_dev.dv_xname);
596 		bus_dmamem_free(sc->sc_dmat, &sc->vge_ldata.vge_tx_listseg, rseg);
597 		return (ENOMEM);
598 	}
599 
600 	error = bus_dmamap_load(sc->sc_dmat, sc->vge_ldata.vge_tx_list_map,
601 	    sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ, NULL, BUS_DMA_NOWAIT);
602 	if (error) {
603 		printf("%s: can't load TX dma map\n", sc->vge_dev.dv_xname);
604 		bus_dmamap_destroy(sc->sc_dmat, sc->vge_ldata.vge_tx_list_map);
605 		bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->vge_ldata.vge_tx_list,
606 		    VGE_TX_LIST_SZ);
607 		bus_dmamem_free(sc->sc_dmat, &sc->vge_ldata.vge_tx_listseg, rseg);
608 		return (ENOMEM);
609 	}
610 
611 	/* Create DMA maps for TX buffers */
612 
613 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
614 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES * nseg,
615 		    VGE_TX_FRAGS, MCLBYTES, 0, BUS_DMA_ALLOCNOW,
616 		    &sc->vge_ldata.vge_tx_dmamap[i]);
617 		if (error) {
618 			printf("%s: can't create DMA map for TX\n",
619 			    sc->vge_dev.dv_xname);
620 			return (ENOMEM);
621 		}
622 	}
623 
624 	/* Allocate DMA'able memory for the RX ring */
625 
626 	error = bus_dmamap_create(sc->sc_dmat, VGE_RX_LIST_SZ, 1,
627 	    VGE_RX_LIST_SZ, 0, BUS_DMA_ALLOCNOW,
628 	    &sc->vge_ldata.vge_rx_list_map);
629 	if (error)
630 		return (ENOMEM);
631 	error = bus_dmamem_alloc(sc->sc_dmat, VGE_RX_LIST_SZ, VGE_RING_ALIGN,
632 	    0, &sc->vge_ldata.vge_rx_listseg, 1, &rseg, BUS_DMA_NOWAIT);
633 	if (error) {
634 		printf("%s: can't alloc RX list\n", sc->vge_dev.dv_xname);
635 		return (ENOMEM);
636 	}
637 
638 	/* Load the map for the RX ring. */
639 
640 	error = bus_dmamem_map(sc->sc_dmat, &sc->vge_ldata.vge_rx_listseg,
641 	     1, VGE_RX_LIST_SZ,
642 	     (caddr_t *)&sc->vge_ldata.vge_rx_list, BUS_DMA_NOWAIT);
643 	memset(sc->vge_ldata.vge_rx_list, 0, VGE_RX_LIST_SZ);
644 	if (error) {
645 		printf("%s: can't map RX dma buffers\n",
646 		    sc->vge_dev.dv_xname);
647 		bus_dmamem_free(sc->sc_dmat, &sc->vge_ldata.vge_rx_listseg, rseg);
648 		return (ENOMEM);
649 	}
650 	error = bus_dmamap_load(sc->sc_dmat, sc->vge_ldata.vge_rx_list_map,
651 	    sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT);
652 	if (error) {
653 		printf("%s: can't load RX dma map\n", sc->vge_dev.dv_xname);
654 		bus_dmamap_destroy(sc->sc_dmat, sc->vge_ldata.vge_rx_list_map);
655 		bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->vge_ldata.vge_rx_list,
656 		    VGE_RX_LIST_SZ);
657 		bus_dmamem_free(sc->sc_dmat, &sc->vge_ldata.vge_rx_listseg, rseg);
658 		return (ENOMEM);
659 	}
660 
661 	/* Create DMA maps for RX buffers */
662 
663 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
664 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES * nseg, nseg,
665 		    MCLBYTES, 0, BUS_DMA_ALLOCNOW,
666 		    &sc->vge_ldata.vge_rx_dmamap[i]);
667 		if (error) {
668 			printf("%s: can't create DMA map for RX\n",
669 			    sc->vge_dev.dv_xname);
670 			return (ENOMEM);
671 		}
672 	}
673 
674 	return (0);
675 }
676 
677 void
vge_freemem(struct vge_softc * sc)678 vge_freemem(struct vge_softc *sc)
679 {
680 	int i;
681 
682 	for (i = 0; i < VGE_RX_DESC_CNT; i++)
683 		bus_dmamap_destroy(sc->sc_dmat,
684 		    sc->vge_ldata.vge_rx_dmamap[i]);
685 
686 	bus_dmamap_unload(sc->sc_dmat, sc->vge_ldata.vge_rx_list_map);
687 	bus_dmamap_destroy(sc->sc_dmat, sc->vge_ldata.vge_rx_list_map);
688 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->vge_ldata.vge_rx_list,
689 	    VGE_RX_LIST_SZ);
690 	bus_dmamem_free(sc->sc_dmat, &sc->vge_ldata.vge_rx_listseg, 1);
691 
692 	for (i = 0; i < VGE_TX_DESC_CNT; i++)
693 		bus_dmamap_destroy(sc->sc_dmat,
694 		    sc->vge_ldata.vge_tx_dmamap[i]);
695 
696 	bus_dmamap_unload(sc->sc_dmat, sc->vge_ldata.vge_tx_list_map);
697 	bus_dmamap_destroy(sc->sc_dmat, sc->vge_ldata.vge_tx_list_map);
698 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->vge_ldata.vge_tx_list,
699 	    VGE_TX_LIST_SZ);
700 	bus_dmamem_free(sc->sc_dmat, &sc->vge_ldata.vge_tx_listseg, 1);
701 }
702 
703 /*
704  * Attach the interface. Allocate softc structures, do ifmedia
705  * setup and ethernet/BPF attach.
706  */
707 void
vge_attach(struct device * parent,struct device * self,void * aux)708 vge_attach(struct device *parent, struct device *self, void *aux)
709 {
710 	u_char			eaddr[ETHER_ADDR_LEN];
711 	struct vge_softc	*sc = (struct vge_softc *)self;
712 	struct pci_attach_args	*pa = aux;
713 	pci_chipset_tag_t	pc = pa->pa_pc;
714 	pci_intr_handle_t	ih;
715 	const char		*intrstr = NULL;
716 	struct ifnet		*ifp;
717 	int			error = 0;
718 
719 	/*
720 	 * Map control/status registers.
721 	 */
722 	if (pci_mapreg_map(pa, VGE_PCI_LOMEM, PCI_MAPREG_TYPE_MEM, 0,
723 	    &sc->vge_btag, &sc->vge_bhandle, NULL, &sc->vge_bsize, 0)) {
724 		if (pci_mapreg_map(pa, VGE_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
725 		    &sc->vge_btag, &sc->vge_bhandle, NULL, &sc->vge_bsize, 0)) {
726 			printf(": can't map mem or i/o space\n");
727 			return;
728 		}
729 	}
730 
731 	/* Allocate interrupt */
732 	if (pci_intr_map(pa, &ih)) {
733 		printf(": couldn't map interrupt\n");
734 		return;
735 	}
736 	intrstr = pci_intr_string(pc, ih);
737 	sc->vge_intrhand = pci_intr_establish(pc, ih, IPL_NET, vge_intr, sc,
738 	    sc->vge_dev.dv_xname);
739 	if (sc->vge_intrhand == NULL) {
740 		printf(": couldn't establish interrupt");
741 		if (intrstr != NULL)
742 			printf(" at %s", intrstr);
743 		return;
744 	}
745 	printf(": %s", intrstr);
746 
747 	sc->sc_dmat = pa->pa_dmat;
748 	sc->sc_pc = pa->pa_pc;
749 
750 	/* Reset the adapter. */
751 	vge_reset(sc);
752 
753 	/*
754 	 * Get station address from the EEPROM.
755 	 */
756 	vge_read_eeprom(sc, eaddr, VGE_EE_EADDR, 3, 1);
757 
758 	bcopy(eaddr, &sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
759 
760 	printf(", address %s\n",
761 	    ether_sprintf(sc->arpcom.ac_enaddr));
762 
763 	error = vge_allocmem(sc);
764 
765 	if (error)
766 		return;
767 
768 	ifp = &sc->arpcom.ac_if;
769 	ifp->if_softc = sc;
770 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
771 	ifp->if_ioctl = vge_ioctl;
772 	ifp->if_start = vge_start;
773 	ifp->if_watchdog = vge_watchdog;
774 #ifdef VGE_JUMBO
775 	ifp->if_hardmtu = VGE_JUMBO_MTU;
776 #endif
777 	ifq_init_maxlen(&ifp->if_snd, VGE_IFQ_MAXLEN);
778 
779 	ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_CSUM_IPv4 |
780 				IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
781 
782 #if NVLAN > 0
783 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
784 #endif
785 
786 	/* Set interface name */
787 	strlcpy(ifp->if_xname, sc->vge_dev.dv_xname, IFNAMSIZ);
788 
789 	/* Do MII setup */
790 	sc->sc_mii.mii_ifp = ifp;
791 	sc->sc_mii.mii_readreg = vge_miibus_readreg;
792 	sc->sc_mii.mii_writereg = vge_miibus_writereg;
793 	sc->sc_mii.mii_statchg = vge_miibus_statchg;
794 	ifmedia_init(&sc->sc_mii.mii_media, 0,
795 	    vge_ifmedia_upd, vge_ifmedia_sts);
796 	mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
797 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
798 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
799 		printf("%s: no PHY found!\n", sc->vge_dev.dv_xname);
800 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL,
801 		    0, NULL);
802 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
803 	} else
804 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
805 
806 	timeout_set(&sc->timer_handle, vge_tick, sc);
807 
808 	/*
809 	 * Call MI attach routine.
810 	 */
811 	if_attach(ifp);
812 	ether_ifattach(ifp);
813 }
814 
815 int
vge_detach(struct device * self,int flags)816 vge_detach(struct device *self, int flags)
817 {
818 	struct vge_softc *sc = (void *)self;
819 	struct ifnet *ifp = &sc->arpcom.ac_if;
820 
821 	pci_intr_disestablish(sc->sc_pc, sc->vge_intrhand);
822 
823 	vge_stop(sc);
824 
825 	/* Detach all PHYs */
826 	mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
827 
828 	/* Delete any remaining media. */
829 	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
830 
831 	ether_ifdetach(ifp);
832 	if_detach(ifp);
833 
834 	vge_freemem(sc);
835 
836 	bus_space_unmap(sc->vge_btag, sc->vge_bhandle, sc->vge_bsize);
837 	return (0);
838 }
839 
840 int
vge_newbuf(struct vge_softc * sc,int idx,struct mbuf * m)841 vge_newbuf(struct vge_softc *sc, int idx, struct mbuf *m)
842 {
843 	struct mbuf		*m_new = NULL;
844 	struct vge_rx_desc	*r;
845 	bus_dmamap_t		rxmap = sc->vge_ldata.vge_rx_dmamap[idx];
846 	int			i;
847 
848 	if (m == NULL) {
849 		/* Allocate a new mbuf */
850 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
851 		if (m_new == NULL)
852 			return (ENOBUFS);
853 
854 		/* Allocate a cluster */
855 		MCLGET(m_new, M_DONTWAIT);
856 		if (!(m_new->m_flags & M_EXT)) {
857 			m_freem(m_new);
858 			return (ENOBUFS);
859 		}
860 
861 		m = m_new;
862 	} else
863 		m->m_data = m->m_ext.ext_buf;
864 
865 	m->m_len = m->m_pkthdr.len = MCLBYTES;
866 	/* Fix-up alignment so payload is doubleword-aligned */
867 	/* XXX m_adj(m, ETHER_ALIGN); */
868 
869 	if (bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m, BUS_DMA_NOWAIT))
870 		return (ENOBUFS);
871 
872 	if (rxmap->dm_nsegs > 1)
873 		goto out;
874 
875 	/* Map the segments into RX descriptors */
876 	r = &sc->vge_ldata.vge_rx_list[idx];
877 
878 	if (letoh32(r->vge_sts) & VGE_RDSTS_OWN) {
879 		printf("%s: tried to map a busy RX descriptor\n",
880 		    sc->vge_dev.dv_xname);
881 		goto out;
882 	}
883 	r->vge_buflen = htole16(VGE_BUFLEN(rxmap->dm_segs[0].ds_len) | VGE_RXDESC_I);
884 	r->vge_addrlo = htole32(VGE_ADDR_LO(rxmap->dm_segs[0].ds_addr));
885 	r->vge_addrhi = htole16(VGE_ADDR_HI(rxmap->dm_segs[0].ds_addr) & 0xFFFF);
886 	r->vge_sts = htole32(0);
887 	r->vge_ctl = htole32(0);
888 
889 	/*
890 	 * Note: the manual fails to document the fact that for
891 	 * proper operation, the driver needs to replenish the RX
892 	 * DMA ring 4 descriptors at a time (rather than one at a
893 	 * time, like most chips). We can allocate the new buffers
894 	 * but we should not set the OWN bits until we're ready
895 	 * to hand back 4 of them in one shot.
896 	 */
897 #define VGE_RXCHUNK 4
898 	sc->vge_rx_consumed++;
899 	if (sc->vge_rx_consumed == VGE_RXCHUNK) {
900 		for (i = idx; i != idx - sc->vge_rx_consumed; i--)
901 			sc->vge_ldata.vge_rx_list[i].vge_sts |=
902 			    htole32(VGE_RDSTS_OWN);
903 		sc->vge_rx_consumed = 0;
904 	}
905 
906 	sc->vge_ldata.vge_rx_mbuf[idx] = m;
907 
908 	bus_dmamap_sync(sc->sc_dmat, rxmap, 0,
909 	    rxmap->dm_mapsize, BUS_DMASYNC_PREREAD);
910 
911 	return (0);
912 out:
913 	DPRINTF(("vge_newbuf: out of memory\n"));
914 	if (m_new != NULL)
915 		m_freem(m_new);
916 	return (ENOMEM);
917 }
918 
919 int
vge_tx_list_init(struct vge_softc * sc)920 vge_tx_list_init(struct vge_softc *sc)
921 {
922 	bzero(sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ);
923 	bzero(&sc->vge_ldata.vge_tx_mbuf,
924 	    (VGE_TX_DESC_CNT * sizeof(struct mbuf *)));
925 
926 	bus_dmamap_sync(sc->sc_dmat,
927 	    sc->vge_ldata.vge_tx_list_map, 0,
928 	    sc->vge_ldata.vge_tx_list_map->dm_mapsize,
929 	    BUS_DMASYNC_PREWRITE);
930 	sc->vge_ldata.vge_tx_prodidx = 0;
931 	sc->vge_ldata.vge_tx_considx = 0;
932 	sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT;
933 
934 	return (0);
935 }
936 
937 /* Init RX descriptors and allocate mbufs with vge_newbuf()
938  * A ring is used, and last descriptor points to first. */
939 int
vge_rx_list_init(struct vge_softc * sc)940 vge_rx_list_init(struct vge_softc *sc)
941 {
942 	int			i;
943 
944 	bzero(sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ);
945 	bzero(&sc->vge_ldata.vge_rx_mbuf,
946 	    (VGE_RX_DESC_CNT * sizeof(struct mbuf *)));
947 
948 	sc->vge_rx_consumed = 0;
949 
950 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
951 		if (vge_newbuf(sc, i, NULL) == ENOBUFS)
952 			return (ENOBUFS);
953 	}
954 
955 	/* Flush the RX descriptors */
956 
957 	bus_dmamap_sync(sc->sc_dmat,
958 	    sc->vge_ldata.vge_rx_list_map,
959 	    0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
960 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
961 
962 	sc->vge_ldata.vge_rx_prodidx = 0;
963 	sc->vge_rx_consumed = 0;
964 	sc->vge_head = sc->vge_tail = NULL;
965 
966 	return (0);
967 }
968 
969 /*
970  * RX handler. We support the reception of jumbo frames that have
971  * been fragmented across multiple 2K mbuf cluster buffers.
972  */
973 void
vge_rxeof(struct vge_softc * sc)974 vge_rxeof(struct vge_softc *sc)
975 {
976 	struct mbuf_list	ml = MBUF_LIST_INITIALIZER();
977 	struct mbuf		*m;
978 	struct ifnet		*ifp;
979 	int			i, total_len;
980 	int			lim = 0;
981 	struct vge_rx_desc	*cur_rx;
982 	u_int32_t		rxstat, rxctl;
983 
984 	ifp = &sc->arpcom.ac_if;
985 	i = sc->vge_ldata.vge_rx_prodidx;
986 
987 	/* Invalidate the descriptor memory */
988 
989 	bus_dmamap_sync(sc->sc_dmat,
990 	    sc->vge_ldata.vge_rx_list_map,
991 	    0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
992 	    BUS_DMASYNC_POSTREAD);
993 
994 	while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) {
995 		struct mbuf *m0 = NULL;
996 
997 		cur_rx = &sc->vge_ldata.vge_rx_list[i];
998 		m = sc->vge_ldata.vge_rx_mbuf[i];
999 		total_len = VGE_RXBYTES(cur_rx);
1000 		rxstat = letoh32(cur_rx->vge_sts);
1001 		rxctl = letoh32(cur_rx->vge_ctl);
1002 
1003 		/* Invalidate the RX mbuf and unload its map */
1004 
1005 		bus_dmamap_sync(sc->sc_dmat,
1006 		    sc->vge_ldata.vge_rx_dmamap[i],
1007 		    0, sc->vge_ldata.vge_rx_dmamap[i]->dm_mapsize,
1008 		    BUS_DMASYNC_POSTWRITE);
1009 		bus_dmamap_unload(sc->sc_dmat,
1010 		    sc->vge_ldata.vge_rx_dmamap[i]);
1011 
1012 		/*
1013 		 * If the 'start of frame' bit is set, this indicates
1014 		 * either the first fragment in a multi-fragment receive,
1015 		 * or an intermediate fragment. Either way, we want to
1016 		 * accumulate the buffers.
1017 		 */
1018 		if (rxstat & VGE_RXPKT_SOF) {
1019 			DPRINTF(("vge_rxeof: SOF\n"));
1020 			m->m_len = MCLBYTES;
1021 			if (sc->vge_head == NULL)
1022 				sc->vge_head = sc->vge_tail = m;
1023 			else {
1024 				m->m_flags &= ~M_PKTHDR;
1025 				sc->vge_tail->m_next = m;
1026 				sc->vge_tail = m;
1027 			}
1028 			vge_newbuf(sc, i, NULL);
1029 			VGE_RX_DESC_INC(i);
1030 			continue;
1031 		}
1032 
1033 		/*
1034 		 * Bad/error frames will have the RXOK bit cleared.
1035 		 * However, there's one error case we want to allow:
1036 		 * if a VLAN tagged frame arrives and the chip can't
1037 		 * match it against the CAM filter, it considers this
1038 		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1039 		 * We don't want to drop the frame though: our VLAN
1040 		 * filtering is done in software.
1041 		 */
1042 		if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM)
1043 		    && !(rxstat & VGE_RDSTS_CSUMERR)) {
1044 			ifp->if_ierrors++;
1045 			/*
1046 			 * If this is part of a multi-fragment packet,
1047 			 * discard all the pieces.
1048 			 */
1049 			if (sc->vge_head != NULL) {
1050 				m_freem(sc->vge_head);
1051 				sc->vge_head = sc->vge_tail = NULL;
1052 			}
1053 			vge_newbuf(sc, i, m);
1054 			VGE_RX_DESC_INC(i);
1055 			continue;
1056 		}
1057 
1058 		/*
1059 		 * If allocating a replacement mbuf fails,
1060 		 * reload the current one.
1061 		 */
1062 
1063 		if (vge_newbuf(sc, i, NULL) == ENOBUFS) {
1064 			if (sc->vge_head != NULL) {
1065 				m_freem(sc->vge_head);
1066 				sc->vge_head = sc->vge_tail = NULL;
1067 			}
1068 
1069 			m0 = m_devget(mtod(m, char *),
1070 			    total_len - ETHER_CRC_LEN, ETHER_ALIGN);
1071 			vge_newbuf(sc, i, m);
1072 			if (m0 == NULL) {
1073 				ifp->if_ierrors++;
1074 				continue;
1075 			}
1076 			m = m0;
1077 
1078 			VGE_RX_DESC_INC(i);
1079 			continue;
1080 		}
1081 
1082 		VGE_RX_DESC_INC(i);
1083 
1084 		if (sc->vge_head != NULL) {
1085 			m->m_len = total_len % MCLBYTES;
1086 			/*
1087 			 * Special case: if there's 4 bytes or less
1088 			 * in this buffer, the mbuf can be discarded:
1089 			 * the last 4 bytes is the CRC, which we don't
1090 			 * care about anyway.
1091 			 */
1092 			if (m->m_len <= ETHER_CRC_LEN) {
1093 				sc->vge_tail->m_len -=
1094 				    (ETHER_CRC_LEN - m->m_len);
1095 				m_freem(m);
1096 			} else {
1097 				m->m_len -= ETHER_CRC_LEN;
1098 				m->m_flags &= ~M_PKTHDR;
1099 				sc->vge_tail->m_next = m;
1100 			}
1101 			m = sc->vge_head;
1102 			sc->vge_head = sc->vge_tail = NULL;
1103 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1104 		} else
1105 			m->m_pkthdr.len = m->m_len =
1106 			    (total_len - ETHER_CRC_LEN);
1107 
1108 #ifdef __STRICT_ALIGNMENT
1109 		bcopy(m->m_data, m->m_data + ETHER_ALIGN, total_len);
1110 		m->m_data += ETHER_ALIGN;
1111 #endif
1112 		/* Do RX checksumming */
1113 
1114 		/* Check IP header checksum */
1115 		if ((rxctl & VGE_RDCTL_IPPKT) &&
1116 		    (rxctl & VGE_RDCTL_IPCSUMOK))
1117 			m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
1118 
1119 		/* Check TCP/UDP checksum */
1120 		if ((rxctl & (VGE_RDCTL_TCPPKT|VGE_RDCTL_UDPPKT)) &&
1121 		    (rxctl & VGE_RDCTL_PROTOCSUMOK))
1122 			m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK | M_UDP_CSUM_IN_OK;
1123 
1124 #if NVLAN > 0
1125 		if (rxstat & VGE_RDSTS_VTAG) {
1126 			m->m_pkthdr.ether_vtag = swap16(rxctl & VGE_RDCTL_VLANID);
1127 			m->m_flags |= M_VLANTAG;
1128 		}
1129 #endif
1130 
1131 		ml_enqueue(&ml, m);
1132 
1133 		lim++;
1134 		if (lim == VGE_RX_DESC_CNT)
1135 			break;
1136 	}
1137 
1138 	if_input(ifp, &ml);
1139 
1140 	/* Flush the RX DMA ring */
1141 	bus_dmamap_sync(sc->sc_dmat,
1142 	    sc->vge_ldata.vge_rx_list_map,
1143 	    0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
1144 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1145 
1146 	sc->vge_ldata.vge_rx_prodidx = i;
1147 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
1148 }
1149 
1150 void
vge_txeof(struct vge_softc * sc)1151 vge_txeof(struct vge_softc *sc)
1152 {
1153 	struct ifnet		*ifp;
1154 	u_int32_t		txstat;
1155 	int			idx;
1156 
1157 	ifp = &sc->arpcom.ac_if;
1158 	idx = sc->vge_ldata.vge_tx_considx;
1159 
1160 	/* Invalidate the TX descriptor list */
1161 
1162 	bus_dmamap_sync(sc->sc_dmat,
1163 	    sc->vge_ldata.vge_tx_list_map,
1164 	    0, sc->vge_ldata.vge_tx_list_map->dm_mapsize,
1165 	    BUS_DMASYNC_POSTREAD);
1166 
1167 	/* Transmitted frames can be now free'd from the TX list */
1168 	while (idx != sc->vge_ldata.vge_tx_prodidx) {
1169 		txstat = letoh32(sc->vge_ldata.vge_tx_list[idx].vge_sts);
1170 		if (txstat & VGE_TDSTS_OWN)
1171 			break;
1172 
1173 		m_freem(sc->vge_ldata.vge_tx_mbuf[idx]);
1174 		sc->vge_ldata.vge_tx_mbuf[idx] = NULL;
1175 		bus_dmamap_unload(sc->sc_dmat,
1176 		    sc->vge_ldata.vge_tx_dmamap[idx]);
1177 		if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
1178 			ifp->if_collisions++;
1179 		if (txstat & VGE_TDSTS_TXERR)
1180 			ifp->if_oerrors++;
1181 
1182 		sc->vge_ldata.vge_tx_free++;
1183 		VGE_TX_DESC_INC(idx);
1184 	}
1185 
1186 	/* No changes made to the TX ring, so no flush needed */
1187 
1188 	if (idx != sc->vge_ldata.vge_tx_considx) {
1189 		sc->vge_ldata.vge_tx_considx = idx;
1190 		ifq_clr_oactive(&ifp->if_snd);
1191 		ifp->if_timer = 0;
1192 	}
1193 
1194 	/*
1195 	 * If not all descriptors have been released reaped yet,
1196 	 * reload the timer so that we will eventually get another
1197 	 * interrupt that will cause us to re-enter this routine.
1198 	 * This is done in case the transmitter has gone idle.
1199 	 */
1200 	if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT)
1201 		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1202 }
1203 
1204 void
vge_tick(void * xsc)1205 vge_tick(void *xsc)
1206 {
1207 	struct vge_softc	*sc = xsc;
1208 	struct ifnet		*ifp = &sc->arpcom.ac_if;
1209 	struct mii_data		*mii = &sc->sc_mii;
1210 	int s;
1211 
1212 	s = splnet();
1213 
1214 	mii_tick(mii);
1215 
1216 	if (sc->vge_link) {
1217 		if (!(mii->mii_media_status & IFM_ACTIVE)) {
1218 			sc->vge_link = 0;
1219 			ifp->if_link_state = LINK_STATE_DOWN;
1220 			if_link_state_change(ifp);
1221 		}
1222 	} else {
1223 		if (mii->mii_media_status & IFM_ACTIVE &&
1224 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1225 			sc->vge_link = 1;
1226 			if (mii->mii_media_status & IFM_FDX)
1227 				ifp->if_link_state = LINK_STATE_FULL_DUPLEX;
1228 			else
1229 				ifp->if_link_state = LINK_STATE_HALF_DUPLEX;
1230 			if_link_state_change(ifp);
1231 			if (!ifq_empty(&ifp->if_snd))
1232 				vge_start(ifp);
1233 		}
1234 	}
1235 	timeout_add_sec(&sc->timer_handle, 1);
1236 	splx(s);
1237 }
1238 
1239 int
vge_intr(void * arg)1240 vge_intr(void *arg)
1241 {
1242 	struct vge_softc	*sc = arg;
1243 	struct ifnet		*ifp;
1244 	u_int32_t		status;
1245 	int			claimed = 0;
1246 
1247 	ifp = &sc->arpcom.ac_if;
1248 
1249 	if (!(ifp->if_flags & IFF_UP))
1250 		return 0;
1251 
1252 	/* Disable interrupts */
1253 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1254 
1255 	for (;;) {
1256 		status = CSR_READ_4(sc, VGE_ISR);
1257 		DPRINTFN(3, ("vge_intr: status=%#x\n", status));
1258 
1259 		/* If the card has gone away the read returns 0xffffffff. */
1260 		if (status == 0xFFFFFFFF)
1261 			break;
1262 
1263 		if (status) {
1264 			CSR_WRITE_4(sc, VGE_ISR, status);
1265 		}
1266 
1267 		if ((status & VGE_INTRS) == 0)
1268 			break;
1269 
1270 		claimed = 1;
1271 
1272 		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1273 			vge_rxeof(sc);
1274 
1275 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1276 			DPRINTFN(2, ("vge_intr: RX error, recovering\n"));
1277 			vge_rxeof(sc);
1278 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1279 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1280 		}
1281 
1282 		if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
1283 			vge_txeof(sc);
1284 
1285 		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL)) {
1286 			DPRINTFN(2, ("DMA_STALL\n"));
1287 			vge_init(ifp);
1288 		}
1289 
1290 		if (status & VGE_ISR_LINKSTS) {
1291 			timeout_del(&sc->timer_handle);
1292 			vge_tick(sc);
1293 		}
1294 	}
1295 
1296 	/* Re-enable interrupts */
1297 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1298 
1299 	if (!ifq_empty(&ifp->if_snd))
1300 		vge_start(ifp);
1301 
1302 	return (claimed);
1303 }
1304 
1305 /*
1306  * Encapsulate an mbuf chain into the TX ring by combining it w/
1307  * the descriptors.
1308  */
1309 int
vge_encap(struct vge_softc * sc,struct mbuf * m_head,int idx)1310 vge_encap(struct vge_softc *sc, struct mbuf *m_head, int idx)
1311 {
1312 	bus_dmamap_t		txmap;
1313 	struct vge_tx_desc	*d = NULL;
1314 	struct vge_tx_frag	*f;
1315 	int			error, frag;
1316 	u_int32_t		vge_flags;
1317 	unsigned int		len;
1318 
1319 	vge_flags = 0;
1320 
1321 	if (m_head->m_pkthdr.csum_flags & M_IPV4_CSUM_OUT)
1322 		vge_flags |= VGE_TDCTL_IPCSUM;
1323 	if (m_head->m_pkthdr.csum_flags & M_TCP_CSUM_OUT)
1324 		vge_flags |= VGE_TDCTL_TCPCSUM;
1325 	if (m_head->m_pkthdr.csum_flags & M_UDP_CSUM_OUT)
1326 		vge_flags |= VGE_TDCTL_UDPCSUM;
1327 
1328 	txmap = sc->vge_ldata.vge_tx_dmamap[idx];
1329 	error = bus_dmamap_load_mbuf(sc->sc_dmat, txmap,
1330 	    m_head, BUS_DMA_NOWAIT);
1331 	switch (error) {
1332 	case 0:
1333 		break;
1334 	case EFBIG: /* mbuf chain is too fragmented */
1335 		if ((error = m_defrag(m_head, M_DONTWAIT)) == 0 &&
1336 		    (error = bus_dmamap_load_mbuf(sc->sc_dmat, txmap, m_head,
1337 		    BUS_DMA_NOWAIT)) == 0)
1338 			break;
1339 	default:
1340 		return (error);
1341         }
1342 
1343 	d = &sc->vge_ldata.vge_tx_list[idx];
1344 	/* If owned by chip, fail */
1345 	if (letoh32(d->vge_sts) & VGE_TDSTS_OWN)
1346 		return (ENOBUFS);
1347 
1348 	for (frag = 0; frag < txmap->dm_nsegs; frag++) {
1349 		f = &d->vge_frag[frag];
1350 		f->vge_buflen = htole16(VGE_BUFLEN(txmap->dm_segs[frag].ds_len));
1351 		f->vge_addrlo = htole32(VGE_ADDR_LO(txmap->dm_segs[frag].ds_addr));
1352 		f->vge_addrhi = htole16(VGE_ADDR_HI(txmap->dm_segs[frag].ds_addr) & 0xFFFF);
1353 	}
1354 
1355 	/* This chip does not do auto-padding */
1356 	if (m_head->m_pkthdr.len < VGE_MIN_FRAMELEN) {
1357 		f = &d->vge_frag[frag];
1358 
1359 		f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN -
1360 		    m_head->m_pkthdr.len));
1361 		f->vge_addrlo = htole32(VGE_ADDR_LO(txmap->dm_segs[0].ds_addr));
1362 		f->vge_addrhi = htole16(VGE_ADDR_HI(txmap->dm_segs[0].ds_addr) & 0xFFFF);
1363 		len = VGE_MIN_FRAMELEN;
1364 		frag++;
1365 	} else
1366 		len = m_head->m_pkthdr.len;
1367 
1368 	/* For some reason, we need to tell the card fragment + 1 */
1369 	frag++;
1370 
1371 	bus_dmamap_sync(sc->sc_dmat, txmap, 0, txmap->dm_mapsize,
1372 	    BUS_DMASYNC_PREWRITE);
1373 
1374 	d->vge_sts = htole32(len << 16);
1375 	d->vge_ctl = htole32(vge_flags|(frag << 28) | VGE_TD_LS_NORM);
1376 
1377 	if (len > ETHERMTU + ETHER_HDR_LEN)
1378 		d->vge_ctl |= htole32(VGE_TDCTL_JUMBO);
1379 
1380 #if NVLAN > 0
1381 	/* Set up hardware VLAN tagging. */
1382 	if (m_head->m_flags & M_VLANTAG) {
1383 		d->vge_ctl |= htole32(m_head->m_pkthdr.ether_vtag |
1384 		    VGE_TDCTL_VTAG);
1385 	}
1386 #endif
1387 
1388 	sc->vge_ldata.vge_tx_dmamap[idx] = txmap;
1389 	sc->vge_ldata.vge_tx_mbuf[idx] = m_head;
1390 	sc->vge_ldata.vge_tx_free--;
1391 	sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN);
1392 
1393 	idx++;
1394 	return (0);
1395 }
1396 
1397 /*
1398  * Main transmit routine.
1399  */
1400 void
vge_start(struct ifnet * ifp)1401 vge_start(struct ifnet *ifp)
1402 {
1403 	struct vge_softc	*sc;
1404 	struct mbuf		*m_head = NULL;
1405 	int			idx, pidx = 0;
1406 
1407 	sc = ifp->if_softc;
1408 
1409 	if (!sc->vge_link || ifq_is_oactive(&ifp->if_snd))
1410 		return;
1411 
1412 	if (ifq_empty(&ifp->if_snd))
1413 		return;
1414 
1415 	idx = sc->vge_ldata.vge_tx_prodidx;
1416 
1417 	pidx = idx - 1;
1418 	if (pidx < 0)
1419 		pidx = VGE_TX_DESC_CNT - 1;
1420 
1421 	for (;;) {
1422 		if (sc->vge_ldata.vge_tx_mbuf[idx] != NULL) {
1423 			ifq_set_oactive(&ifp->if_snd);
1424 			break;
1425 		}
1426 
1427 		m_head = ifq_dequeue(&ifp->if_snd);
1428 		if (m_head == NULL)
1429 			break;
1430 
1431 		if (vge_encap(sc, m_head, idx)) {
1432 			m_freem(m_head);
1433 			ifp->if_oerrors++;
1434 			continue;
1435 		}
1436 
1437 		/*
1438 		 * If there's a BPF listener, bounce a copy of this frame
1439 		 * to him.
1440 		 */
1441 #if NBPFILTER > 0
1442 		if (ifp->if_bpf)
1443 			bpf_mtap_ether(ifp->if_bpf, m_head, BPF_DIRECTION_OUT);
1444 #endif
1445 
1446 		sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |=
1447 		    htole16(VGE_TXDESC_Q);
1448 
1449 		pidx = idx;
1450 		VGE_TX_DESC_INC(idx);
1451 	}
1452 
1453 	if (idx == sc->vge_ldata.vge_tx_prodidx) {
1454 		return;
1455 	}
1456 
1457 	/* Flush the TX descriptors */
1458 
1459 	bus_dmamap_sync(sc->sc_dmat,
1460 	    sc->vge_ldata.vge_tx_list_map,
1461 	    0, sc->vge_ldata.vge_tx_list_map->dm_mapsize,
1462 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1463 
1464 	/* Issue a transmit command. */
1465 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1466 
1467 	sc->vge_ldata.vge_tx_prodidx = idx;
1468 
1469 	/*
1470 	 * Use the countdown timer for interrupt moderation.
1471 	 * 'TX done' interrupts are disabled. Instead, we reset the
1472 	 * countdown timer, which will begin counting until it hits
1473 	 * the value in the SSTIMER register, and then trigger an
1474 	 * interrupt. Each time we set the TIMER0_ENABLE bit, the
1475 	 * the timer count is reloaded. Only when the transmitter
1476 	 * is idle will the timer hit 0 and an interrupt fire.
1477 	 */
1478 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1479 
1480 	/*
1481 	 * Set a timeout in case the chip goes out to lunch.
1482 	 */
1483 	ifp->if_timer = 5;
1484 }
1485 
1486 int
vge_init(struct ifnet * ifp)1487 vge_init(struct ifnet *ifp)
1488 {
1489 	struct vge_softc	*sc = ifp->if_softc;
1490 	int			i;
1491 
1492 	/*
1493 	 * Cancel pending I/O and free all RX/TX buffers.
1494 	 */
1495 	vge_stop(sc);
1496 	vge_reset(sc);
1497 
1498 	/* Initialize RX descriptors list */
1499 	if (vge_rx_list_init(sc) == ENOBUFS) {
1500 		printf("%s: init failed: no memory for RX buffers\n",
1501 		    sc->vge_dev.dv_xname);
1502 		vge_stop(sc);
1503 		return (ENOBUFS);
1504 	}
1505 	/* Initialize TX descriptors */
1506 	if (vge_tx_list_init(sc) == ENOBUFS) {
1507 		printf("%s: init failed: no memory for TX buffers\n",
1508 		    sc->vge_dev.dv_xname);
1509 		vge_stop(sc);
1510 		return (ENOBUFS);
1511 	}
1512 
1513 	/* Set our station address */
1514 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1515 		CSR_WRITE_1(sc, VGE_PAR0 + i, sc->arpcom.ac_enaddr[i]);
1516 
1517 	/* Set receive FIFO threshold */
1518 	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR);
1519 	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES);
1520 
1521 	if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) {
1522 		/*
1523 		 * Allow transmission and reception of VLAN tagged
1524 		 * frames.
1525 		 */
1526 		CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_VTAGOPT);
1527 		CSR_SETBIT_1(sc, VGE_RXCFG, VGE_VTAG_OPT2);
1528 	}
1529 
1530 	/* Set DMA burst length */
1531 	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
1532 	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
1533 
1534 	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
1535 
1536 	/* Set collision backoff algorithm */
1537 	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
1538 	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
1539 	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
1540 
1541 	/* Disable LPSEL field in priority resolution */
1542 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
1543 
1544 	/*
1545 	 * Load the addresses of the DMA queues into the chip.
1546 	 * Note that we only use one transmit queue.
1547 	 */
1548 	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
1549 	    VGE_ADDR_LO(sc->vge_ldata.vge_tx_listseg.ds_addr));
1550 	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
1551 
1552 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
1553 	    VGE_ADDR_LO(sc->vge_ldata.vge_rx_listseg.ds_addr));
1554 	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
1555 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
1556 
1557 	/* Enable and wake up the RX descriptor queue */
1558 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1559 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1560 
1561 	/* Enable the TX descriptor queue */
1562 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
1563 
1564 	/* Set up the receive filter -- allow large frames for VLANs. */
1565 	CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_GIANT);
1566 
1567 	/* Program promiscuous mode and multicast filters. */
1568 	vge_iff(sc);
1569 
1570 	/* Initialize pause timer. */
1571 	CSR_WRITE_2(sc, VGE_TX_PAUSE_TIMER, 0xFFFF);
1572 	/*
1573 	 * Initialize flow control parameters.
1574 	 *  TX XON high threshold : 48
1575 	 *  TX pause low threshold : 24
1576 	 *  Disable half-duplex flow control
1577 	 */
1578 	CSR_WRITE_1(sc, VGE_CRC2, 0xFF);
1579 	CSR_WRITE_1(sc, VGE_CRS2, VGE_CR2_XON_ENABLE | 0x0B);
1580 
1581 	/* Enable jumbo frame reception (if desired) */
1582 
1583 	/* Start the MAC. */
1584 	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
1585 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
1586 	CSR_WRITE_1(sc, VGE_CRS0,
1587 	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
1588 
1589 	/*
1590 	 * Configure one-shot timer for microsecond
1591 	 * resolution and load it for 500 usecs.
1592 	 */
1593 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
1594 	CSR_WRITE_2(sc, VGE_SSTIMER, 400);
1595 
1596 	/*
1597 	 * Configure interrupt moderation for receive. Enable
1598 	 * the holdoff counter and load it, and set the RX
1599 	 * suppression count to the number of descriptors we
1600 	 * want to allow before triggering an interrupt.
1601 	 * The holdoff timer is in units of 20 usecs.
1602 	 */
1603 
1604 #ifdef notyet
1605 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
1606 	/* Select the interrupt holdoff timer page. */
1607 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1608 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
1609 	CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
1610 
1611 	/* Enable use of the holdoff timer. */
1612 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
1613 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
1614 
1615 	/* Select the RX suppression threshold page. */
1616 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1617 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
1618 	CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
1619 
1620 	/* Restore the page select bits. */
1621 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1622 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
1623 #endif
1624 
1625 	/*
1626 	 * Enable interrupts.
1627 	 */
1628 	CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
1629 	CSR_WRITE_4(sc, VGE_ISR, 0);
1630 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1631 
1632 	/* Restore BMCR state */
1633 	mii_mediachg(&sc->sc_mii);
1634 
1635 	ifp->if_flags |= IFF_RUNNING;
1636 	ifq_clr_oactive(&ifp->if_snd);
1637 
1638 	sc->vge_link = 0;
1639 
1640 	if (!timeout_pending(&sc->timer_handle))
1641 		timeout_add_sec(&sc->timer_handle, 1);
1642 
1643 	return (0);
1644 }
1645 
1646 /*
1647  * Set media options.
1648  */
1649 int
vge_ifmedia_upd(struct ifnet * ifp)1650 vge_ifmedia_upd(struct ifnet *ifp)
1651 {
1652 	struct vge_softc *sc = ifp->if_softc;
1653 
1654 	return (mii_mediachg(&sc->sc_mii));
1655 }
1656 
1657 /*
1658  * Report current media status.
1659  */
1660 void
vge_ifmedia_sts(struct ifnet * ifp,struct ifmediareq * ifmr)1661 vge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1662 {
1663 	struct vge_softc *sc = ifp->if_softc;
1664 
1665 	mii_pollstat(&sc->sc_mii);
1666 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1667 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1668 }
1669 
1670 void
vge_miibus_statchg(struct device * dev)1671 vge_miibus_statchg(struct device *dev)
1672 {
1673 	struct vge_softc	*sc = (struct vge_softc *)dev;
1674 	struct mii_data		*mii;
1675 	struct ifmedia_entry	*ife;
1676 
1677 	mii = &sc->sc_mii;
1678 	ife = mii->mii_media.ifm_cur;
1679 
1680 	/*
1681 	 * If the user manually selects a media mode, we need to turn
1682 	 * on the forced MAC mode bit in the DIAGCTL register. If the
1683 	 * user happens to choose a full duplex mode, we also need to
1684 	 * set the 'force full duplex' bit. This applies only to
1685 	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
1686 	 * mode is disabled, and in 1000baseT mode, full duplex is
1687 	 * always implied, so we turn on the forced mode bit but leave
1688 	 * the FDX bit cleared.
1689 	 */
1690 
1691 	switch (IFM_SUBTYPE(ife->ifm_media)) {
1692 	case IFM_AUTO:
1693 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1694 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1695 		break;
1696 	case IFM_1000_T:
1697 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1698 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1699 		break;
1700 	case IFM_100_TX:
1701 	case IFM_10_T:
1702 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1703 		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
1704 			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1705 		} else {
1706 			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1707 		}
1708 		break;
1709 	default:
1710 		printf("%s: unknown media type: %llx\n",
1711 		    sc->vge_dev.dv_xname, IFM_SUBTYPE(ife->ifm_media));
1712 		break;
1713 	}
1714 
1715 	/*
1716 	 * 802.3x flow control
1717 	*/
1718 	CSR_WRITE_1(sc, VGE_CRC2, VGE_CR2_FDX_TXFLOWCTL_ENABLE |
1719 	    VGE_CR2_FDX_RXFLOWCTL_ENABLE);
1720 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1721 		CSR_WRITE_1(sc, VGE_CRS2, VGE_CR2_FDX_TXFLOWCTL_ENABLE);
1722 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1723 		CSR_WRITE_1(sc, VGE_CRS2, VGE_CR2_FDX_RXFLOWCTL_ENABLE);
1724 }
1725 
1726 int
vge_ioctl(struct ifnet * ifp,u_long command,caddr_t data)1727 vge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1728 {
1729 	struct vge_softc	*sc = ifp->if_softc;
1730 	struct ifreq		*ifr = (struct ifreq *) data;
1731 	int			s, error = 0;
1732 
1733 	s = splnet();
1734 
1735 	switch (command) {
1736 	case SIOCSIFADDR:
1737 		ifp->if_flags |= IFF_UP;
1738 		if (!(ifp->if_flags & IFF_RUNNING))
1739 			vge_init(ifp);
1740 		break;
1741 
1742 	case SIOCSIFFLAGS:
1743 		if (ifp->if_flags & IFF_UP) {
1744 			if (ifp->if_flags & IFF_RUNNING)
1745 				error = ENETRESET;
1746 			else
1747 				vge_init(ifp);
1748 		} else {
1749 			if (ifp->if_flags & IFF_RUNNING)
1750 				vge_stop(sc);
1751 		}
1752 		break;
1753 
1754 	case SIOCGIFMEDIA:
1755 	case SIOCSIFMEDIA:
1756 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
1757 		break;
1758 
1759 	default:
1760 		error = ether_ioctl(ifp, &sc->arpcom, command, data);
1761 	}
1762 
1763 	if (error == ENETRESET) {
1764 		if (ifp->if_flags & IFF_RUNNING)
1765 			vge_iff(sc);
1766 		error = 0;
1767 	}
1768 
1769 	splx(s);
1770 	return (error);
1771 }
1772 
1773 void
vge_watchdog(struct ifnet * ifp)1774 vge_watchdog(struct ifnet *ifp)
1775 {
1776 	struct vge_softc *sc = ifp->if_softc;
1777 	int s;
1778 
1779 	s = splnet();
1780 	printf("%s: watchdog timeout\n", sc->vge_dev.dv_xname);
1781 	ifp->if_oerrors++;
1782 
1783 	vge_txeof(sc);
1784 	vge_rxeof(sc);
1785 
1786 	vge_init(ifp);
1787 
1788 	splx(s);
1789 }
1790 
1791 /*
1792  * Stop the adapter and free any mbufs allocated to the
1793  * RX and TX lists.
1794  */
1795 void
vge_stop(struct vge_softc * sc)1796 vge_stop(struct vge_softc *sc)
1797 {
1798 	int			i;
1799 	struct ifnet		*ifp;
1800 
1801 	ifp = &sc->arpcom.ac_if;
1802 	ifp->if_timer = 0;
1803 
1804 	timeout_del(&sc->timer_handle);
1805 
1806 	ifp->if_flags &= ~IFF_RUNNING;
1807 	ifq_clr_oactive(&ifp->if_snd);
1808 
1809 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1810 	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
1811 	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
1812 	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
1813 	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
1814 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
1815 
1816 	if (sc->vge_head != NULL) {
1817 		m_freem(sc->vge_head);
1818 		sc->vge_head = sc->vge_tail = NULL;
1819 	}
1820 
1821 	/* Free the TX list buffers. */
1822 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1823 		if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) {
1824 			bus_dmamap_unload(sc->sc_dmat,
1825 			    sc->vge_ldata.vge_tx_dmamap[i]);
1826 			m_freem(sc->vge_ldata.vge_tx_mbuf[i]);
1827 			sc->vge_ldata.vge_tx_mbuf[i] = NULL;
1828 		}
1829 	}
1830 
1831 	/* Free the RX list buffers. */
1832 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1833 		if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) {
1834 			bus_dmamap_unload(sc->sc_dmat,
1835 			    sc->vge_ldata.vge_rx_dmamap[i]);
1836 			m_freem(sc->vge_ldata.vge_rx_mbuf[i]);
1837 			sc->vge_ldata.vge_rx_mbuf[i] = NULL;
1838 		}
1839 	}
1840 }
1841